
US Army Corps
of Engineers
Engineer Research and
Development Center

CERL Noise Monitoring
and Warning System 98

Daniel Sachs, Jonathan W. Benson, and Paul D. Schomer

The present CERL Noise Monitoring and Warning
System, designed in the mid-1980s, has difficulty
separating blast noise sounds from wind-induced
pseudo-noise. A new noise monitor was designed
that would be more wind noise resistant and
would use more modern electronics and methods
than those available in 1985. This report
documents the design and construction of this
new noise monitor.

The heart of wind-noise resistance is a two-
microphone array and special signal processing to
identify and separate blast sounds from pseudo-
wind noise. The results are quite encouraging. It
appears that the new monitor improves the signal-
to-noise ratio by about 10 dB. It is recommended
that this monitor be transferred to the field by a
demonstration validation program such as the
Environmental Security Technology Certification
Program (ESTCP).

CERL Technical Report 99/99
December 1999

Approved for public release; distribution is unlimited. WWW.CECER.ARMY.MIL/TECHREPORTS

2 CERL TR 99/99

Foreword

This study was conducted for the Environmental Division at Fort Drum, NY, un-
der Military Interdepartmental Purchase Request 6MCER50063, Work Unit
H16, “Noise Control.” The technical monitor was Loren Zeilnhofer, ATZS-PW-E.

The work was performed by the Ecological Processes Branch (CN-N) of the In-
stallations Division (CN) Construction Engineering Research Laboratory
(CERL). Al Schwark, Chief of the Fort Drum Range Division, was very helpful
in time and resources to actually field and test the blast noise monitor. The
CERL Principal Investigator was Paul D. Schomer. Dr. Harold Balbach is Chief,
CN-N, and Dr. John Bandy is Chief, CN. The technical editor was Linda L.
Wheatley, Information Technology Laboratory.

The Director of CERL is Dr. Michael J. O’Connor.

DISCLAIMERDISCLAIMERDISCLAIMERDISCLAIMER

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use of such commercial products. All product names and
trademarks cited are the property of their respective owners.

The findings of this report are not to be construed as an official Department of the Army position unless so designated by
other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

CERL TR 99/99 3

Contents

Foreword ... 2

List of Figures and Tables .. 5

1 Introduction ... 7

Background ...7

Objective ...7

Approach...8

Major Improvements ..9

Major System Changes From Original Implementation..10

Mode of Technology Transfer ..11

2 Design Overview... 12

Hardware...12

Field Unit Controller Software ..13

Field Unit DSP Software ..14

Base Station Software ...14

3 Noise Monitor Operation Manual... 16

Base Station Configuration and Operation ...16

Base Station Hardware ..16

Base Station Software ...17

Base Station Operation..18

Field Unit Hardware Installation ..19

Field Unit Configuration...21

Field Unit Console Mode..21

Field Unit Configuration ...22

Data Collection and the Blast Detection Algorithm ..24

Thresholds, Filters, and Data Collection ..25

Field Unit Maintenance ..32

Preventative Maintenance...33

Field Unit Service Mode..34

Field Unit FLASH Update Procedure ..35

4 Noise Monitor Testing Results ... 37

Laboratory Test Results for the Blast Recognition System ...37

4 CERL TR 99/99

Results of Blast Noise Detection / Wind Noise Rejection Tests..37

Results of Cross-Multiplication in Blast Noise Measurement Simulations....................................40

5 Implementation Details.. 42

DSP Software Details ..42

Code for CPU_B: Blast Detection and Wind Noise Rejection Algorithm43

Code for CPU_A: Noise Monitor Functions...46

Controller Software Details ...50

Controller Software Run-time Files ..50

Controller Software Boot Process and Field Service Mode ...52

Source Code Overview ..53

Data Queue File Format ..56

Configuration Notes ...58

Hardware Details...60

Configuring ISA Cards ...62

Assembling the ISA Card Cage ...66

Assembling Custom Components..68

Field Unit Assembly ...72

6 Conclusions and Recommendation ... 78

References.. 79

Appendix A: Console Commands.. 80

Appendix B: Monitor Options.. 85

Appendix C: Field Unit Software Source Code ... 94

Appendix D1: MON7_2 code (CPU_B) Blast Detection Algorithm ... 130

Appendix D2: MON7_1 code (CPU_A) Noise Monitor Computations.................................... 140

Appendix D3: C-Weighting Filter.. 154

Appendix E: Field Unit Schematics.. 156

Appendix F: Field Unit Communications Protocol Specification.. 163

Distribution ... 183

Report Documentation Page ... 184

CERL TR 99/99 5

List of Figures and Tables

Figures

 1 Field unit installation at Fort Drum, NY..20

 2 Installed noise monitoring field unit at Fort Drum, NY...73

 3 Closeup view of microphone and wind meter setup at Fort Drum, NY73

 4 Internal view of the CERL Noise Monitoring and Warning System field unit
case ..75

 D1 Frequency response of C-filter ideal analog and measured digital response155

 E1 The analog input connector on the DPC-C40 DSP motherboard157

 E2 Interconnections between audio input boards, 24-V board, ISA card cage,
and microphone power supply/preamp ..158

 E3 Audio input PCB schematic and connector pinout ...159

 E4 Schematic of 24-V board..160

 E5 Wiring harness connecting the ISA card cage, the 12-V board, and the audio
input boards..161

 E6 Wind meter debounce circuit schematic, which is inserted between the WDT-
501P watchdog card and the wiring harness ...161

 E7 Connections between field unit, microphones, and wind meter...........................162

Tables

 1 Interaction between KEEP flags ..31

 2 Blast detection probabilities (Monte Carlo testing) ..38

 3 Blast detection algorithm tests on Fort Riley data ...40

 4 Measurement improvement for cross product ...41

 5 Files contained on the noise monitor’s FLASH ROM ..51

 6 Parts manifest and sources ...77

 E1 Connector pin assignments ...156

CERL TR 99/99 7

1 Introduction

Background

The Construction Engineering Research Laboratory (CERL) Noise Monitoring
and Warning System is designed to recognize and report environmental noise
due to on-base firing of heavy weapons. It consists of microphones, a control
unit, and a base station that can be shared by multiple monitors. The first
CERL Noise Monitoring and Warning System was built in the mid-1980s for in-
stallation at Fort Richardson, AK. Since then, many monitoring systems have
been built and installed at different sites. However, the design has some tech-
nological limitations and relies on several parts, such as Hayes 300 bits per sec-
ond (bps) modems, which are no longer in production. In 1996, CERL began to
redesign the noise monitoring system using newer technology, addressing the
limitations inherent to the older design. This work culminated in 1998 with the
completion of testing of the prototype noise monitoring system delivered to Fort
Drum, NY, in August 1997.

The older noise monitor units have several problems, most of which relate to the
fact that the devices are quite simply very old. It is now difficult to acquire new
parts with which to build new monitors, or repair the old ones; many of the parts
have been discontinued, and several others are custom-built and therefore re-
quire many man-hours for assembly. In addition, the old control and signal
processing hardware did not allow for much “intelligence” – the control software
was very simple, with a primitive debugging interface and few configurable op-
tions. Since the design of the original noise monitors, advances in hardware,
software, and signal processing algorithms have allowed these restrictions to be
addressed.

Objective

The objective of this research was to test a new drop-in model of the CERL Noise
Monitoring and Warning System to determine if it provides greater immunity
from wind noise than the older model. The system is designed to inform an in-
stallation (typically range control) when impulse noise in the community or in
other critical areas exceeds thresholds established by the installation. To do this,

8 CERL TR 99/99

a system consisting of a base station and one or more field units in locations se-
lected by the installation is used.

For the older units, the menu-driven base station software controlled the unit
and allowed all user parameters to be viewed and changed. Because the redes-
igned field unit is more versatile but adheres to the same interface as the older
units, not all of the enhanced functionality is available from the base station
software. This requires additional setup steps not applicable to the old monitor.
However, the base station remains the central controller for an array of moni-
tors, including both the old and new design.

The theory behind the redesigned noise monitor remains the same as the origi-
nal. Its redesign was simply to take advantage of research in blast noise detec-
tion and more powerful computing hardware that has become available in the
past few years. The redesigned field unit is a drop-in replacement for the older
design. It replaces the older design, maintaining the same functionality, while
using modern digital signal processor (DSP) hardware and specialized blast-
detection software to improve noise immunity and allow blasts that are barely
above wind-noise peaks to be detected and reported accurately. Like the old
noise monitors, the new design incorporates a wind meter to warn of events that
may be caused by wind noise; however, unlike the old monitors, internal software
will reject most wind. The analog hardware for the new monitor provides a sig-
nal-to-noise ratio of approximately 65 to 70 dB, and a theoretical dynamic range
of 96 dB. It is possible that improved analog design could improve the signal-to-
noise ratio to approximately 85 dB.

Approach

A two-step approach was used to redesign the CERL Noise Monitoring and
Warning System. The first step was to design signal processing algorithms to
distinguish true blast noise from wind noise, which is the most significant source
of false blast data collected by the previous monitors. The second step was to
implement these new signal processing algorithms in a new field unit designed
to improve upon the old field unit while remaining as compatible as possible.

For the new design, researchers used as much off-the-shelf hardware as possible,
while still designing a functional and environmentally robust monitoring system.
Therefore, the redesigned monitor was implemented primarily using standard
components that included an embedded IBM-compatible personal computer (PC)
controller and an off-the-shelf Industry Standard Architecture (ISA) DSP board.
The few custom components are mostly slight modifications of the equivalent

CERL TR 99/99 9

components for the original field units. Although some of the individual parts
are more expensive than the equivalent parts for the original field units, both
share a modular design philosophy and failing parts can be easily replaced.

Major Improvements

Blast detection and filtering

The CERL Noise Monitoring and Warning System 98 incorporates hardware and
software that helps prevent wind noise from being presented to the base station
as blast data. The redesign includes two microphones and a DSP board running
specialized blast-detection software, which allows the noise monitor to reject over
95 percent of wind noise while still recognizing genuine blasts less than a decibel
above the wind noise floor. Using the DSP software and two microphones, the
redesigned noise monitor substantially reduces the amount of invalid data taken
while still recording any blasts that actually occur. The increased noise immu-
nity allows the data-recording threshold to be lowered, thereby decreasing the
false positive rate. With fewer false positives, the amount of data collected de-
creases, which reduces the cost of sending the data.

Higher transfer speeds

The new monitor also lowers telephone costs by supporting faster transfer rates
between the field unit and the base station. Old CERL noise monitors used 300
bits per second (bps) modems, which took several seconds to transfer an acoustic
data block. With new software and hardware at the base station, the new noise
monitor can transfer an equivalent data block in less than a second. This re-
duces the amount of time the monitor spends online to a base station, further
reducing cost of operation.

Outgoing call control

The new CERL noise monitor also adds the capability of controlling which data
blocks result in outgoing calls. The original noise monitor placed calls when any
data block was collected. If the noise monitors were used for real-time warnings,
a large telephone bill resulted. The new noise monitor is capable of identifying
data blocks that meet the users’ criteria for importance, and only makes outgo-
ing calls to warn of blocks exceeding these thresholds. Any other data are held
in the monitor until they are collected by the base station.

10 CERL TR 99/99

Improved maintainability

The CERL Noise Monitoring and Warning System 98 also adds features that im-
prove the maintainability of the hardware and firmware. Many operations that
once required physical access to the unit, including upgrades to the internal con-
trol programs, can now be performed remotely via the onboard modem. Stan-
dard PC laptops running terminal emulation software can perform maintenance
either directly or via modem; no console serial card or other extra hardware
needs to be added to the monitor. Most diagnostics can be done without even
opening the unit’s case. In addition, the majority of the hardware components
are industry standard, so it will be relatively easy to substitute different parts if
a particular part becomes difficult to acquire.

Major System Changes From Original Implementation

The design of the new noise monitor unit is conceptually similar to the old units,
but in a practical sense, they are very different. The old units were based on a
CIM-100 embedded controller, and specialized software running under a multi-
threaded version of FORTH (called SEVENTH); it also used a 68000 as a signal
processor chip, running assembly code to do the summation for the true root
mean square (RMS) calculations. This re-implementation of the monitor uses a
similar overall structure: it consists of an i486-based controller card (running
MS-DOS∗ and a C/C++ control program) and a dual Texas Instruments (TI)
TMS-32C040 signal processing card. This card includes the analog-to-digital
(A/D) converter. It finds peaks and total energies and performs digital-domain
C-weighting and blast detection.

Despite architectural similarities, however, the two units have many differences.
First, improvements in integration and Very Large Scale Integration (VLSI) de-
sign techniques since the design of the original monitor have enabled much more
processing power to be put inside the monitor. The extra processing power of-
fered by the i486 controller allows us to run a much more sophisticated control
code. The extra signal processing power in the 32C040 chips allows the C-weight
filter to be moved into the digital domain, resulting in improved accuracy and
thermal stability. It also allows performance of blast-noise discrimination, which
lowers the effective noise floor by as much as 5 dB.

∗ MS-DOS = Microsoft Disk Operating System.

CERL TR 99/99 11

The single largest architectural difference between the two units is the use of
two microphones instead of one. The additional microphone provides two impor-
tant advantages. First, it allows improved signal-to-wind-noise ratios by using
the cross product of the two microphone’s outputs, instead of the square of a sin-
gle microphone. This method tends to cancel the wind noise, which has less cor-
relation between the two inputs. The cross-correlation of the two microphones
can also be used as part of the blast detection algorithm. Also, by using two mi-
crophones, some exploitable redundancy is gained. The loss of one microphone
would compromise the ability of the monitor to discriminate blast noise from
wind noise, but usable data can still be collected with only one working micro-
phone.

Mode of Technology Transfer

It is recommended that the new CERL Noise Monitoring and Warning System 98
be transferred to the field via a suitable demonstration validation (DEM-VAL)
program such as the Environmental Security Technology Certification Program
(ESTCP).

12 CERL TR 99/99

2 Design Overview

Hardware

On the exterior, the new field units look much the same as the older noise moni-
tor design. It uses the same environmental enclosure, air handling, filters, and
many of the same connections. Internally, however, the layout is very different.
The ISA bus backplane is shaped differently than the older CIM bus, and re-
quires more careful ventilation. Unlike the old military-specification CIM cards,
the ISA cards used in the new field units are commercial components designed
for operation over a restricted temperature range of approximately 0 to 40 °C. To
account for these hardware differences, the layout inside the monitor unit has
been completely changed.

The redesign moves the card cage to the right side of the box, increasing airflow
over the processing elements (see Figure 4 on p 75). On the left side of the box is
a 1000-watt fan/heater used when the internal temperature becomes danger-
ously high or low. Although the 24-volt board from the older design was reused,
its mounting and the mounting for the 24-V alternating current (AC) trans-
former had to be moved to make room for the ISA backplane on the right side of
the field unit. Also, the modem holder at the top of the unit was replaced with a
strap for the amplifier and power supply unit for the Larson-Davis (Provo, Utah)
outdoor microphones. The main power supply for the field units was replaced
with a conventional PC-type power supply with no battery backup, as the origi-
nal monitor power supplies could not be reused. There simply was no room in
the prototype unit for battery backup hardware, although further redesign could
possibly add a battery backup.

Most of the field unit hardware components are commercially available industry
standards: the outdoor microphone system, wind sensor, ISA card cage and
power supply, and the ISA cards. Of the custom-built components, almost all use
printed-circuit boards originally designed for the original monitor units (al-
though the new audio input boards bear little practical resemblance to the origi-
nal designs). The debouncer circuit that was added to solve last-minute prob-
lems is a small, wire-wrapped board. As stated earlier, use of industry-standard
components will make replacement parts easier to acquire than parts for the
older monitor units, which use several components that have been discontinued.

CERL TR 99/99 13

The new hardware also offers much more computing and signal processing power
than the original monitor design, allowing the performance improvements.

The field unit also includes line conditioning hardware for both the incoming AC
power and telephone line, which have effectively prevented power surges and
spikes in incoming lines from damaging the field unit’s internal circuitry.

Field Unit Controller Software

The field unit’s primary controller is an Intel 80486-based single board computer
running MS-DOS. It controls the ISA backplane and all other devices inside the
field unit, and is responsible for all initialization, communication, and control
tasks. The basic architecture of the field unit control software is a cyclic main
loop, which rotates through a few basic tasks required to run the field unit:
• Check for new data from the DSP board, and accumulate and store any

blocks collected.
• Check for new data from the modem, and send any pending data.
• Check for commands from an attached console keyboard or a serial-port

pseudo-console.
• Check environmental data (such as internal temperature and system volt-

age), and turn the heater and fan on or off as appropriate.
• Check the event queue for other sporadic tasks (e.g., calibration sequencing

and manual data block collection).
• Write data stored in internal data buffers out to disk.

In addition to the tasks called by the main loop, a few other tasks are performed
by the monitor in response to internal and external interrupts. An internal
clock, which triggers an interrupt 18.2 times per second, is used as a timing ref-
erence by the field unit software. The chopper-type wind meter also triggers an
interrupt on every edge. This interrupt is used to count the number of times the
wind meter makes a low-to-high transition. These data are combined with tim-
ings provided by the clock to provide an exact wind speed. Also, any data sent to
or received from the serial port is buffered and handled by an asynchronous se-
rial communications driver.

The field unit software is rather complex, but it has also proven to be fairly ro-
bust. Problems invariably crop up, however, in any actual implementation of a
complex software program, so a hardware watchdog was included. This watch-
dog assures that, if the main loop of the host software ever fails to execute, the
entire monitor will be restarted. If this happens, the monitor will be back up
and taking data within a minute. Redundancies in the data storage procedure

14 CERL TR 99/99

ensure that, under normal circumstances, if the monitor is restarted, only one or
two recorded data blocks at most will be lost.

Field Unit DSP Software

The field unit also contains a Spectrum Signal Processing DPC40B board, with
two 40 MHz TI TMS320C40 DSP microprocessors, a Crystal Semiconductor ADC
and digital-to-analog converter (DAC) board, and dual-port random access mem-
ory (DPRAM) to allow communication with the host PC. The two onboard DSP
processors are identical, except that only the first processor can access the ADC
and DAC board and the DPRAM. The two processors communicate via high-
speed, buffered communications ports integrated onto the DSP microprocessors.

The field unit’s signal-processing software has two primary processes, one run-
ning on each DSP. The first processor takes the data from the ADCs, performs a
C-weight filter on each channel, and records the peak and sound exposure level
(SEL) data. The flat and C-weight peaks and integrals, as well as those for the
cross products of the two channels, are accumulated in tenth-second blocks and
then made available to the host software. This greatly reduces demands on the
host processor.

The second processor handles the blast detection process. Acoustic data are
transferred from the first processor to the second. The second processor exam-
ines its input signal, looking for acoustic energy in frequency bands characteris-
tic of blast noise. This information, as well as tests for correlation between the
data acquired from the two channels, is used to identify blasts. The blast detec-
tion flags are then reported to the first processor, which accumulates and stores
them with the rest of the data for each tenth-second block.

Base Station Software

The base station software used by the CERL Noise Monitoring and Warning Sys-
tem 98 is almost identical to the software used by the original field units. In
fact, the field unit’s control software is designed to emulate the original noise
monitoring system’s field units as closely as possible. This allows the new field
units to be used interchangeably with the older units. The same base station
software is used for both types of field units. A minor update was required to the
field unit software used for the old monitor. The update adds support for some
extra flags passed back by the new field unit.

The field unit also supports a special console mode that allows extended
parameters (only applicable to the new field unit) to be set and field upgrades to

CERL TR 99/99 15

be performed. This console mode cannot be activated with the existing base sta-
tion software. However, since the console mode simply uses standard American
National Standards Institute (ANSI) terminal emulation, any communications
software can be used. KERMIT, a free communication program distributed by
Columbia University, is particularly well suited for this application. It supports
ANSI terminal emulation, as well as the file-transfer modes used for the field
upgrade process.

16 CERL TR 99/99

3 Noise Monitor Operation Manual

Base Station Configuration and Operation

From the perspective of the base station, the new field units are equivalent to
the old design. They use the same protocols and transmit the same data. How-
ever, a minor update to the base station software is necessary to prevent the field
unit’s use of extra bits in the “windy” flag from causing unexpected effects.
(Without this update, any event that did not trigger blast detection or that failed
to pass the filter would be marked as windy.) With no significant updates to the
base station code, base station operation is nearly identical. The only noticeable
change is that the monitor will place fewer calls if the filtering features are en-
abled.

Base Station Hardware

The CERL Noise Monitoring and Warning System base station consists of a 286
or greater, IBM AT-compatible PC with a hard disk, and an attached modem,
keyboard, and monitor. Optionally, a nearby Novell (Orem, Utah) server will ac-
cept all of the data collected by the base station (including both noise and
weather data) and make it available to all other machines on a local network.
Additionally, the base station is not particularly selective about the software that
it runs on. This means that it could even be run as a background process under
Windows® 95 or Windows® NT on a machine that serves as a personal worksta-
tion as well.

Some minor hardware differences exist between an ideal base station for the old
units and the base station for the new units; for practical purposes, however, the
two are interchangeable. The old field units have 300 bps modems, as did the
original base stations. However, the 300 bps transfer rate is not sufficient for
the console mode, so a faster modem (2400, 9600, or 14400 bps) is recommended
for base stations controlling the new monitors. Also, the original base stations
included a “listen mode” module, and an amplifier and speaker used to listen to
the microphone on the field unit. “Listen mode” is not supported in the monitor
redesign, so this hardware is useless for the new monitors.

CERL TR 99/99 17

A few requirements for the base station software need to be considered if off-the-
shelf hardware is being assembled into a noise monitor base station. First, the
base station control program is a DOS-only program designed to run full-time. It
is best if it can run under DOS without Windows — this improves stability and
decreases the likelihood of problems in the case of power failures. It also allows
the use of either a timer or a software reboot program to reboot the base station
on a regular basis. Second, the base station software only supports the COM1
and COM2 ports, so the modem must be attached to one of these two COM ports.
If it is placed on COM3 or COM4, the base station software will not function. It
is also best to use an external modem. The modem lights are useful diagnostic
tools, and it is generally easier to assign COM1 and COM2 to the motherboard
serial ports of modern machines than it is to assign them to a “Plug and Play”
internal modem.

In addition, new modems must support 300 bps reliably. Not all high-speed mo-
dems reliably connect at 300 bps, especially when the modem at the other end is
(as is the case for the new noise monitoring unit) also a high-speed modem.

Base Station Software

Two programs are used on the base station to control the new CERL field unit
prototype. The first piece of software is a slightly modified version of the base
station software for the original noise monitors. This version of the base station
software is fully compatible with the original noise monitor software, and sup-
ports the two extra flags returned by the field unit: the blast detection flag and
the filter flag. The second piece of software used with the new CERL field unit is
a conventional terminal emulation program such as KERMIT, Telix, or Pro-
COMM Plus. The terminal emulation software is used to access the field unit’s
maintenance console mode.

The base station software installation is fairly simple. If DOS (not Windows®
95) is already installed on the base station, and there is no Novell server or other
networking required, the base station code (available on a floppy disk from
CERL) must be copied into a directory on the base station’s hard disk drive, and
the “MON_330.EXE” program must be run from the AUTOEXEC.BAT file of the
computer. If the computer has Windows® 95 installed, it should be replaced
with DOS. (Although the base station program works under Windows® 95,
CERL’s system does not support that configuration.) If a prior version is in-
stalled, the new code (specifically, MON_330.EXE, MNU_330.TXT, and
ERR_330.TXT) must be copied onto the base station, and MON_330.EXE must
be executed from the base station’s startup code.

18 CERL TR 99/99

If data collected from the field units need to be placed on a Novell server to be
accessed from other computers, a few extra steps are required. First, the base
station computer must be configured to access the network upon boot. Once this
is done, the directory C:\FIRE must be created, and the file FIRE.CFG placed in
it. This file needs to contain the line

NOISE MONITOR DATA=<directory for Noise Monitor data>

where the directory specified is a network drive. With this file in place, the base
station software will automatically write a duplicate copy of all data it collects
onto the network drive. Note that the above line should be added to any
FIRE.CFG file already present, either in C:\FIRE or in F:\FIRE (the base sta-
tion software, like CERL’s other DOS tools, assumes that F:\ is the first network
drive).

In addition to the base station software from CERL, a terminal emulator pro-
gram is also required. CERL will supply a copy of KERMIT, a free DOS program
that supports the console mode operation of the new field units. KERMIT can
also transfer files to and from the field unit, as part of the field upgrade mecha-
nism. To install KERMIT, simply copy the files from the distribution disk to a
KERMIT directory on the hard disk of the base station. To use it, run the
KERMIT.EXE program file, and use the following commands to set up the con-
nection:

SET PORT <port number for modem>
SET SPEED <speed>
CONNECT

Next dial using the modem command “ATDT <phone number>”. Note that, if a
14,400 or 28,800 bps modem is used, the SPEED should be 38,400 bps. If the
modem is 2400 bps, use 2400 bps, and 300 bps modems should set a SPEED of
300 bps. Note that “console mode” on a 300 bps modem will be very slow. To ac-
cess the console mode once the modem is connected, hold down CTRL-A until the
status line appears. (Note that the status line can be disabled. If this has been
done, check to see if the field unit has entered console mode by trying to type a
command. If the typed characters appear on the screen [echo], the field unit is in
console mode.)

Base Station Operation

Although it cannot control all aspects of the new field unit’s operation, the base
station software does perform many important functions. It is responsible for

CERL TR 99/99 19

collecting all data gathered by the field units (both new and old), setting all the
parameters for the original field unit’s operation, and setting all the new field
unit’s parameters that also exist in the older unit.

The base station software performs the following tasks:
• set the time of day
• Set the flat-weight, absolute threshold for data. (It can only set the

“ABS_THRESH” option, not the other thresholds. Normally, this will not be
used in the newer field units.)

• Set the wind-speed threshold, timeout, and sample interval, and whether or
not windy data should be suppressed. (The console interface offers consid-
erably more flexibility for these options.)

• sampling the noise level at a given field unit
• sampling the calibrator level at a given field unit
• enabling or disabling the accumulation of acoustic data at a given field unit
• listening to an unprocessed audio signal from an original field unit (This

mode is not supported in the new units.)

The base station software is menu-driven, fairly straightforward, and easy to
use. It has not changed significantly since the manuals for the older field units
were written, so refer to these manuals for further information.

Field Unit Hardware Installation

The basic requirements for installation of the redesigned field units are as fol-
lows:
• standard voice telephone line
• standard 120-V AC service (60 Hz)
• 10-m tall pole
• two 2-m crossarms; one at the top of the pole, and one approximately 3 m

lower
• one microphone and the wind meter are mounted on the top crossarm
• the other microphone is mounted on the bottom crossarm.

The field unit consists of the following parts:
• main case
• top microphone
• wind meter (attached to top microphone)
• bottom microphone.

20 CERL TR 99/99

The first step of field unit installation is to physically mount all components on
the pole as shown in Figure 1. The field unit itself should be mounted low on the
pole (but about 10 ft in the air, so it is less vulnerable to vandalism); the top mi-
crophone (which is labeled “1” and attached to the wind meter) should be
mounted on one end of the top crossarm, and the bottom microphone (“2”) should
be mounted directly under it on the bottom crossarm. The wind meter should be
mounted on the far side of the top crossarm.

To connect the field unit, bring the AC power into the nipple (installed on the
right side of the bottom cutout) to the three screws on the left side of the isola-
tion module (attached to the bottom right area inside the field unit, under the
fan). Several other attachments are already there; do not remove them. The
telephone line should be brought into a rubber grommet on the left side of the
bottom cutout and attached to the right side of the telephone line isolator (at-
tached under the audio input module). The AC power for the wind meter’s
heater should be brought into the AC power nipple as well, and then plugged
into one of the two AC outlets mounted under the switch to the right.

Finally, the two microphone cables must be attached. Cable “1” (the top micro-
phone) should be attached to the port labeled “1” on the bottom of the cutout, and
cable “2” attached to the port labeled “2.”

Figure 1. Field unit installation at Fort Drum, NY.

CERL TR 99/99 21

Finally, the monitor should be powered up. When the AC power is turned on, the
light on the power supply in the center of the field unit will glow, and its fan will
start (if it does not, check to make sure that the power supply is turned on). Af-
ter approximately 30 seconds, the yellow light-emitting diode (LED) mounted on
the 24-V board (attached to the top right corner of the case) will begin to flash on
briefly approximately once every second. (This means that the internal control
program is running, but data collection has been suspended.) After 3 to 4 min-
utes, the monitor will attempt to calibrate the microphones the red lights on
the audio module (labeled “1” and “2”) will come on to indicate the calibrators are
active.

Immediately after setup, the monitor should be attached to a laptop and tested.
To do this, attach the laptop to the console serial mode, calibrate the micro-
phones, take a few data points, and observe the result.

Field Unit Configuration

After the field unit is physically set up, it must be configured. This can be done
using the unit’s “console mode,” described below.

Field Unit Console Mode

Because the feature set of the new monitors was completely redesigned without
making major changes to the base station software, many of the new features
can only be enabled using the console mode. Console mode is used to check out
the monitor immediately after installation, and to set parameters and reconfig-
ure the unit as it runs in the field.

The field unit console mode can be activated in two ways. First, a serial terminal
(normally, a laptop with a communications program such as Telix or ProComm
Plus) can be plugged into the console serial port in the monitor. If this method is
used, the laptop should be set for 5700 bps, no parity, 8 data bits, and 1 stop bits.
A null-modem serial cable should also be plugged into the 9-pin port on the left
side of the ISA card cage.

Alternatively, an ISA video card and monitor can be plugged into the empty slot
in the card cage, and a keyboard plugged into the keyboard connector. A monitor
and keyboard attached in this way will serve as the console. (This connection is
necessary for operations that require access to the DOS command prompt. The
field unit software does not allow direct access to DOS via a serial port; however,
most operations can be performed using KERMIT.)

22 CERL TR 99/99

If the physical field unit is not easily accessible, the console mode can also be ac-
cessed via the internal modem. To do this, dial up the field unit with a standard
terminal program. After it connects, hold down Ctrl-A for a few seconds. After
the field unit has received 10 consecutive Ctrl-A characters, the unit will go into
console mode. At this point, a status line will appear at the top of the screen
(unless it has been disabled; see the command summary under Base Station
Software).

Console mode allows direct access to almost anything the monitor can do. It can
be used to view (with more detail) and delete any data that the monitor collects.

Appendix A contains a list of commands available in the console mode. However,
certain console mode commands are particularly important:

SHOW: Shows information on blocks stored in the queue, thresholds, filter
settings, or option settings.

HELP: Gets help. HELP <command> displays the help file for a command;
HELP SET <option> displays help for an option.

SET: Sets an option. SET <option> <parameters>.

CAL: Take a calibration block.

HANGUP: Hangs up the phone. (Use to disconnect a remote console mode.)

START: Take a manual data block. Normally used as “START <time>” to
take a <time> second data block. The results are stored and dis-
played on the screen.

Field Unit Configuration

The field unit has a large list of configurable options. Many of them have usable
defaults or can be set from the base station; however, because the base station
software and protocol were designed for the original noise monitor unit, several
important parameters can only be set from the console mode. The console mode
command to set a parameter is:

SET <parameter> <option>

Many parameters are available; Appendix B is a complete list. Following is a
summary of important settings that can only be made in console mode. These

CERL TR 99/99 23

should be set as part of the field unit setup procedure. The “*” refers to every-
thing that starts or ends with the characters around it.

CAL_LVL: Set the calibrator level of the microphones. Should be set to
correspond to the actual acoustic energy (dB) that corre-
sponds to the calibrators. (This level is only used for the con-
sole displays. In future versions of the field unit and base
station software, it may be used for actual data as well.)

*_THRESH: Parameters ending in _THRESH control the data collection
threshold. The monitor will accumulate data (starting
PRETRIG seconds before the threshold and continuing
POSTTRIG seconds afterward) if a tenth-second block ex-
ceeds all of the set thresholds.

*_FILTER: Parameters ending in _FILTER control the internal filter.
This can be used to reject data blocks or to identify blocks as
being “important.” The field unit will only call the base sta-
tion when its memory holds more than a certain number of
blocks (CALL_THRESH).

KEEP_*: The original noise monitor allowed blocks to be accepted or
rejected based on wind speed. The newer noise monitors al-
low for more extensive control over conditions under which a
block will be kept, and whether or not a warning call will be
made. These options are controlled by KEEP_BAD,
KEEP_WINDY, and KEEP_FILTER.

CALL_THRESH: Unless an “important” block comes in, the field unit will not
call the base station until there are at least this number of
blocks in the queue.

DATE: Sets the field unit time. (SET TIME hr:min:sec)

TIME: Sets the field unit time. (SET DATE month/day/year)

(Note that the date and time can be set with the base station software as well.)

Finally, having two microphones requires that the base station’s calibrator con-
stant be set to the average of the calibrator constants of the two microphones. (A

24 CERL TR 99/99

later release of the field unit and base station software may have better support
for the two-microphone configuration.)

Data Collection and the Blast Detection Algorithm

One important new feature added in the field unit redesign was a blast detection
algorithm. This algorithm is described in more detail later; however, properly
setting up the threshold for the field unit requires an understanding of how the
blast detection algorithm operates.

The SEL and peak level data provided by the monitor are based on the raw data
from the microphone (sampled at a rate of 48,000 samples per second), while the
C-weight SEL (CSEL) and C-weight peak data are based on the microphone data
after they are passed through an implementation of a C-weight filter. The data
are accumulated into tenth-second blocks, and the following data are stored for
each block:
• peak value seen for each microphone, and the position of this peak within the

tenth-second block
• peak value seen for the C-weighted data from each microphone, and the

peak’s position
• peak value seen for the cross product of the data from the two microphones,

and its position
• peak value seen for the cross product of the C-weighted data, and its position
• the sum of the squares of the microphone samples for each microphone
• the sum of the square of the C-weighted data for each microphone
• the sum of the cross-microphone products for the flat-weighted and C-

weighted data.

All these data are passed to the controller program, which normally stores the
cross product data for later transmission to the base station. (This behavior can
be modified using the CHANNEL_MODE option.) The thresholds and filters can
be set on either flat or C-weighted data; however, only the flat weight peak and
C-weight SEL data are passed on to the base station.

The raw 48 kHz data are also decimated to 2 kHz; the remaining samples are
then passed on to the blast detection algorithm. After receiving each sample, the
blast detection algorithm decides whether it is likely that a blast is currently in
progress. This determination is based on two factors:
• The energy in a frequency range characteristic of blast noise (approximately

10 Hz to 35 Hz) must be at least 25 percent of the largest energy in that band
seen in the last third of a second, not including the last 35 ms.

CERL TR 99/99 25

• There must be at least a 70 percent cross-correlation between the two chan-
nels. (Wind will tend to have a lower cross-correlation.) This will cut out
much of the wind noise, which tends to be poorly correlated between the two
microphones.

If both of these conditions are met, the incoming sample is considered to be part
of a blast. When this happens, a blast detection “blip” is passed back and in-
cluded with the tenth-second block that is currently accumulating. The total
number of blast detection blips in each tenth-second block is stored with the
block. The number of blips in a given block can then be compared with a thresh-
old to determine if there is, in fact, a blast event in progress.

If BLAST_THRESH (this threshold) is set to 1, the blast detection algorithm will
be able to identify blasts at 0 dB relative to wind noise, and have a false positive
rate that allows approximately 3 percent of non-blast peaks to be stored. Nor-
mally, this blast detection threshold will be set to 1. However, because raising
the threshold somewhat decreases the false positive rate, it may be useful in
noisy environments. This decrease in the false positive rate, however, comes at
the expense of somewhat increasing the minimum signal-to-noise ratio required
to trigger the threshold. Using a blast threshold of 7 (representing 7 blast detec-
tion flags out of the 200 possible in each tenth-second block) seems to allow most
“real” blast data to be recorded, and minimizes wind noise.

The blast detection algorithm has been extensively characterized for the case
where the blast threshold is one blast-detection “blip.” (These data are included
in Chapter 4.) However, it has not been characterized for higher numbers of de-
tections, and little empirical performance data exists. Also note that it is possi-
ble for the blast detection blips generated by the blast’s peak to be split between
two adjacent tenth-second blocks, so using high value for the blast threshold may
result in unrecorded blasts. Although it is known that using a higher number
for the blast threshold increases wind-noise immunity and sensitivity to weak
blasts, it is not known exactly how much these two values change. Therefore, if
the blast threshold is set to a value greater than one, the user should verify that
valid blast data are not being ignored.

Thresholds, Filters, and Data Collection

An important part of setting up the monitor is setting the threshold and filter
options. Unlike the old noise monitoring units, which had only one threshold op-
tion (flat-weighted peak), the new monitors support a variety of trigger threshold
parameters. Data collection will be triggered if, and only if, all the thresholds
are met simultaneously.

26 CERL TR 99/99

Threshold basics

The original CERL noise monitor units had only one threshold to set they
compared the absolute value of the signal from the ADCs to this threshold, and
triggered data collection whenever this threshold was exceeded. For compatibil-
ity, the redesigned units preserve the absolute threshold. However, to take full
advantage of the new design, additional trigger conditions were added. In prac-
tice, these new conditions should be used the absolute threshold can be left at
a very high value, or turned off completely.

By setting the proper thresholds, the monitor can be programmed to trigger
when a variety of different conditions occur. Data blocks are taken when all of
the trigger conditions are simultaneously satisfied by a tenth-second block. To
use the monitor to detect blast noise, set the CPK_THRESH (C-weight peak
acoustic level) and FPK_THRESH (flat-weight peak acoustic level) as well as
BLAST_THRESH (which controls the blast-detection algorithm sensitivity). For
other applications, the CSEL_THRESH (C-weight tenth-second SEL) and
FSEL_THRESH (flat-weight tenth-second SEL) thresholds can also be set.

These thresholds can be applied to either microphone or a composite of both. If
both microphones are enabled (which is the default state), these thresholds will
be compared against the cross peak and cross SEL values measured by the moni-
tor. These cross values are obtained by assuming the product of the two micro-
phones’ outputs is the square of the “actual” measurement. In laboratory test-
ing, this method of measurement was found to improve the wind immunity of the
system without measurably affecting the peak and SEL levels seen by the moni-
tor. When in the dual-microphone mode, the cross values used for the threshold
are also the values reported to the base station. In single-microphone mode, the
peaks and SELs seen by that single microphone are sent.

For example, at the Fort Drum Spragueville test site, the following set of thresh-
olds were used:

SET CPK_THRESH 95
SET FPK_THRESH 100
SET BLAST_THRESH 1

These settings mean that, for a trigger to occur, all of the following conditions
must be satisfied:
• The observed C-weight peak for a tenth-second block must be at least 95 dB
• The observed flat-weight peak for a tenth-second block must be at least 100

dB

CERL TR 99/99 27

• The blast-detection algorithm must have detected a blast.

These values were chosen based on the observed noise floor of approximately 100
dB in light to moderate winds. A 100-dB blast will result in an observed C-
weight peak of approximately 95 dB; because the C-weight filter removes 10 to
15 dB of wind noise and only about 5 dB of blast noise, the combination of the C-
weight and flat-weight thresholds improves the wind noise immunity of the noise
monitor substantially.

An even larger improvement can be achieved by setting the blast detection
threshold to 1 or more. A threshold of 1 is the “normal” value, and results in a
very low incidence of undetected blasts. Higher blast detection threshold values
result in even better wind noise immunity; however, more blasts will go unde-
tected as the blast threshold rises. The exact effects of values greater than one
on the blast detection algorithm have not been quantified; however, if the blast
threshold is set to greater than 50, only the very strongest blasts will be stored.
Any value greater than 200 will completely disable data collection.

Available thresholds

The monitor triggers data collection when all of the enabled thresholds are satis-
fied by the same tenth-second block. This trigger accumulates data PRETRIG
seconds before the trigger tenth-second block and POSTTRIG seconds after, and
forms a data block that is sent to the base station. Any thresholds may be dis-
abled with the command “SET <threshold name> OFF.”

ABS_THRESH (absolute thresholds) corresponds to the threshold for the old
monitor. ABS_THRESH is compared against an absolute value coming off the
ADCs. Any changes in the gain constant of the microphones will affect the
acoustic decibels that this threshold corresponds to. This threshold option was
included to maintain compatibility with the older field unit design. However, it
serves the same purpose as the acoustic level thresholds so it will normally be
left unset.

Because ABS_THRESH is intended only for compatibility with the base stations,
normally it will be set by the base station: “Call a Unit” / “Display/Modify Unit
Parameters” / “Peak Threshold.” However, it can also be set using console mode.
Use “SET ABS_THRESH <1..32767>” to set it as a number (with 32767 = 96.3
dB relative to the minimum detectable sound level, and 1 being the minimum
detectable sound level). It can also be set in decibels using “SET ABS_THRESH
<number> dB” (where 96.3 dB is the maximum possible), or in calibrated, acous-
tic sound levels using “SET ABS_THRESH <number> ABS dB.”

28 CERL TR 99/99

FPK_THRESH and ABS_THRESH are similar; however, FPK_THRESH stores
an acoustic decibel level. To work properly, the calibrator values must be set
properly. Whenever ambient noise peaks exceed the given level (in decibels), this
threshold will be triggered. The FPK_THRESH variable is set using “SET
FPK_THRESH <level>” where <level> is the acoustic threshold level in decibels.

Likewise, CPK_THRESH triggers whenever C-weighted ambient noise levels ex-
ceed that level. C-weighting the peaks is useful, because much of the wind noise
is blocked by the C-weight filter, while much of a blast is passed. To set the C-
weight peak threshold, use “SET CPK_THRESH <level>.”

FSEL_THRESH and CSEL_THRESH are triggers based on the total energy con-
tained in tenth-second blocks. Note that these values do not correspond to the
total SEL over an entire 2+ second data block; the data block is not accumulated
until after the trigger takes place. The filter can be used to limit collected data
to only high total energy blasts. These values are set using “SET
FSEL_THRESH <level>” and “SET CSEL_THRESH <level>.”

BLAST_THRESH controls the blast detection algorithm. Turning BLAST_
THRESH off (“SET BLAST_THRESH OFF”) disables blast detection completely.
This can be useful for monitoring non-blast noise, but severely reduces the im-
munity of the monitor from false blocks due to wind noise. “SET BLAST_
THRESH 1” enables blast detection; the threshold condition includes a signal
from the blast detection algorithm that a blast is in progress. Setting BLAST_
THRESH to 2 or more will further reduce wind noise but will decrease the likeli-
hood of quiet or indistinct blasts being recognized as blast noise.

Data accumulation and collection

Once the thresholds are satisfied, the monitor begins to accumulate tenth-second
blocks into a data block to be sent to the base station. The monitor retrieves the
data for the last PRETRIG seconds (in tenth-second increments) from its circular
queues, and continues to accumulate data for POSTTRIG seconds after the trig-
ger event. If additional triggers occur during this time, the data accumulation
proceeds until POSTTRIG seconds after the last trigger.

To set the pre-trigger and post-trigger accumulation times, use the “Call a Unit-
>Modify Unit Parameters” base station menu option or the following console
commands:

SET PRETRIG <seconds>
SET POSTTRIG <seconds>

CERL TR 99/99 29

The default value for PRETRIG is 0.5 seconds, and the default value for
POSTTRIG is 1.5 seconds. Note that, due to the finite size of the circular buffer
used to store past tenth-second blocks, the pre-trigger time is limited to 4 sec-
onds. The post-trigger time can be up to several thousand seconds.

The datum returned as PEAK is the highest peak seen in the entire block (in-
cluding pre-trigger and post-trigger times), and the datum returned as SEL is
the C-weight SEL across the entire block. Since the SEL accumulates all sound
energy seen over the entire period, it is best to set the pre-trigger and post-
trigger values only high enough to capture the entire blast. Wind noise can be-
come a significant fraction of the total energy for a very large block, and the blast
noise detection algorithms are only applied to the trigger. The C-weight filter
rejects most of the wind noise, but what remains can still skew the detected blast
energy.

Block filters

Once the data block has been accumulated for the post-trigger time after the last
trigger, the final block is then filtered according to several rules. An acoustic fil-
ter “passes” a block based on acoustic criteria. In addition, blocks may be filtered
based on the presence of a blast-detection flag somewhere in the block, and based
on whether the “windy” flag was set any time during the collection of the data
block.

Blocks that pass all of these filters are marked as “important.” An “important”
block triggers a call from the monitor to the base station; an “unimportant” block
does not. Typically, this filtering will be used to separate low-level blast noise
(which will be reported during a nightly call from the base station to the moni-
tor) from loud blasts that should be reported immediately. In this way, the field
unit becomes more useful as both a monitoring device and as a warning device.
It collects data on low-level noise events without tying up the telephone line by
calling every few minutes. A block with the “reject” flag is not recorded or sent to
the base station.

Three separate flags control the actions of the filters: KEEP_BAD,
KEEP_FILTER, and KEEP_WINDY. These interact with each other through
two flags: “block accepted” and “block is important.”

Initially, each block is marked as both accepted and important. These flags are
cleared based on the conditions in the KEEP settings. If a KEEP setting is set to
“CALL,” the condition it controls will have no effect on either the “reject” flag or
the “important” flag. If a particular KEEP setting specifies that a block should

30 CERL TR 99/99

be rejected or marked as unimportant, that takes precedence over any other set-
ting indicating that the block should be kept or is important. All of the KEEP
settings apply only if the condition they signify applies. The KEEP_BAD setting
applies if the block is rejected by blast detection, the KEEP_WINDY flag applies
if a block is marked as windy, and the KEEP_FILTER setting applies if the block
does not satisfy the filter thresholds.

KEEP_BAD is the simplest of the KEEP settings. In fact, if the monitor is con-
figured to trigger only on a blast detection (BLAST_THRESH is set to 1 or more),
the monitor essentially ignores it because all blocks will contain blast detections.
However, if BLAST_THRESH is set to 0 (ignoring the blast detection algorithm
for the thresholds), this setting can be used to control the disposition of blocks
that did not contain a detected blast. If KEEP_BAD is OFF, the block will be
rejected. If KEEP_BAD is ON, the block is not rejected but the importance flag
is cleared the block will not result in a warning call to the base station. Fi-
nally, if KEEP_BAD is set to CALL, the block will be kept and the importance
flag will not be cleared. Either way, the field unit will mark the block as “BAD”
(no blast detection) when it is sent to the base station.

The KEEP_WINDY and KEEP_FILTER settings are more complex, but this
complexity is masked if the monitor is configured to trigger only when a blast is
detected. If KEEP_WINDY is set to CALL, the windy flag is passed to the base
station but otherwise ignored. If KEEP_WINDY is ON and a data block is
marked as windy, the importance flag is cleared. If KEEP_WINDY is OFF, a
data block marked as windy is rejected. If BLAST_THRESH is set to 0, two ad-
ditional settings apply: BLAST and CALL-BLAST. If KEEP_WINDY is set to
BLAST, a block that is windy will be rejected if no blast was detected during that
block. If a blast was detected, it will be kept with the importance flag cleared. If
KEEP_WINDY is set to CALL-BLAST, a block with a blast detection will not be
rejected and the importance flag will not be cleared.

KEEP_FILTER behaves exactly the same way. If it is set to CALL, the fact that
the filter did not accept the block is passed on to the base station but otherwise
ignored; if ON, the importance flag will be cleared; if OFF, the block will be re-
jected. Likewise, if BLAST_THRESH is 0, BLAST will not reject a block that
contains a blast detection, and CALL-BLAST will not clear the importance flag
for such blocks.

Unlike the thresholds, which are triggered only if all of the specified conditions
are met, the acoustic filter passes a block if any of the conditions are satisfied. If
the accumulated data block meets or exceeds any of these filter settings, the

CERL TR 99/99 31

filter will pass the block, and the conditions specified by KEEP_FILTER will not
be applied. The acoustic filter supports four conditions:

FSEL_FILTER: The flat-weight SEL for the entire data block
CSEL_FILTER: The C-weight SEL for the entire data block
FPK_FILTER: The highest flat-weight peak for the entire data block
CPK_FILTER: The highest C-weight peak for the entire data block

All of these are set using the SET <filter> <decibel level> command, or cleared
using the SET <filter> OFF command. A cleared filter will never pass any data.
For example, in the test setup at Fort Drum, the following filter settings are set
up:

SET FPK_FILTER 115
SET CPK_FILTER OFF
SET CSEL_FILTER OFF
SET FSEL_FILTER OFF

These settings pass any block that contains a peak of 115 dB or more. The
KEEP settings are set to ignore wind speed and mark only blocks that pass the
filter as important. The KEEP_BAD is irrelevant because the BLAST_THRESH
option is set to 1. These settings are achieved using the following commands:

SET KEEP_WINDY CALL
SET KEEP_FILTER ON

The following truth table (Table 1) describes the interaction between the KEEP
flags. Note that, if BLAST_THRESH is zero, then all blocks that are taken will
be “blast” blocks, and the value of KEEP_BAD is essentially ignored. CALL in-
dicates that the block is marked as important the monitor will attempt to call
the base station if one or more important blocks are in the queue.

Table 1. Interaction between KEEP flags.

 KEEP_WINDY,

 KEEP_FILTER,

 KEEP_BAD

 No blast

 Windy

 Below
filter

 Blast

 Windy

 Below
filter

 No Blast

 Not Windy

 Below
filter

 Blast

 Not Windy

 Below
filter

 No Blast

 Windy

 Passes
filter

 Blast

 Windy

 Passes
filter

 No Blast

 Not Windy

 Passes
filter

 Blast

 Not Windy

 Passes
filter

 CALL, CALL, CALL PHONE PHONE PHONE PHONE PHONE PHONE PHONE PHONE

 CALL, CALL, ON KEPT PHONE KEPT PHONE KEPT PHONE KEPT PHONE

 CALL, CALL, OFF PHONE PHONE PHONE PHONE

CALL, ON, CALL KEPT KEPT KEPT KEPT PHONE PHONE PHONE PHONE

 CALL, ON, ON KEPT KEPT KEPT KEPT KEPT PHONE KEPT PHONE

 CALL, ON, OFF KEPT KEPT PHONE PHONE

 CALL, OFF, CALL PHONE PHONE PHONE PHONE

32 CERL TR 99/99

 KEEP_WINDY,

 KEEP_FILTER,

 KEEP_BAD

 No blast

 Windy

 Below
filter

 Blast

 Windy

 Below
filter

 No Blast

 Not Windy

 Below
filter

 Blast

 Not Windy

 Below
filter

 No Blast

 Windy

 Passes
filter

 Blast

 Windy

 Passes
filter

 No Blast

 Not Windy

 Passes
filter

 Blast

 Not Windy

 Passes
filter

 CALL, OFF, ON KEPT PHONE KEPT PHONE

 CALL, OFF, OFF PHONE PHONE

 ON, CALL, CALL KEPT KEPT PHONE PHONE KEPT KEPT PHONE PHONE

 ON, CALL, ON KEPT KEPT KEPT PHONE KEPT KEPT KEPT PHONE

 ON, CALL, OFF KEPT PHONE KEPT PHONE

ON, ON, CALL KEPT KEPT KEPT KEPT KEPT KEPT PHONE PHONE

 ON, ON, ON KEPT KEPT KEPT KEPT KEPT KEPT KEPT PHONE

 ON, ON, OFF KEPT KEPT KEPT PHONE

 ON, OFF, CALL KEPT KEPT PHONE PHONE

 ON, OFF, ON KEPT KEPT KEPT PHONE

 ON, OFF, OFF KEPT PHONE

 OFF, CALL, CALL PHONE PHONE PHONE PHONE

 OFF, CALL, ON KEPT PHONE KEPT PHONE

 OFF, CALL, OFF PHONE PHONE

OFF, ON, CALL KEPT KEPT PHONE PHONE

 OFF, ON, ON KEPT KEPT KEPT PHONE

 OFF, ON, OFF KEPT PHONE

 OFF, OFF, CALL PHONE PHONE

 OFF, OFF, ON KEPT PHONE

 OFF, OFF, OFF PHONE

 BLAST, CALL, CALL KEPT PHONE PHONE KEPT PHONE PHONE

 BLAST, CALL, ON KEPT KEPT PHONE KEPT KEPT PHONE

 BLAST, CALL, OFF KEPT PHONE KEPT PHONE

BLAST, ON, CALL KEPT KEPT KEPT KEPT PHONE PHONE

 BLAST, ON, ON KEPT KEPT KEPT KEPT KEPT PHONE

 BLAST, ON, OFF KEPT KEPT KEPT PHONE

 BLAST, OFF, CALL KEPT PHONE PHONE

 BLAST, OFF, ON KEPT KEPT PHONE

 BLAST, OFF, OFF KEPT PHONE

 CALL-BLAST, CALL, CALL PHONE PHONE PHONE PHONE PHONE PHONE

 CALL-BLAST, CALL, ON PHONE KEPT PHONE PHONE KEPT PHONE

 CALL-BLAST, CALL, OFF PHONE PHONE PHONE PHONE

CALL-BLAST, ON, CALL KEPT KEPT KEPT PHONE PHONE PHONE

 CALL-BLAST, ON, ON KEPT KEPT KEPT PHONE KEPT PHONE

 CALL-BLAST, ON, OFF KEPT KEPT PHONE PHONE

 CALL-BLAST, OFF, CALL PHONE PHONE PHONE

 CALL-BLAST, OFF, ON PHONE KEPT PHONE

 CALL-BLAST, OFF, OFF PHONE PHONE

Field Unit Maintenance

The field unit’s hardware and software are designed to be robust and require lit-
tle attention, but it will occasionally be necessary to perform maintenance to cor-

CERL TR 99/99 33

rect software flaws or fix broken hardware. The field unit is set up so that both
hardware and software modules can easily be replaced in the field if problems
are found. In fact, software problems can generally be rectified over the modem,
without any onsite presence whatsoever.

Preventative Maintenance

Although the field unit is robust and designed for unattended operation outdoors
for extended periods of time, it does require regular preventative maintenance to
stay in good operating condition.

First, the field unit contains air filters a steel filter and a foam filter on the
left side (the air intake) and a steel filter only on the right side (exhaust). These
filters, which are on the bottom of the unit, help keep insects and dust out of the
field unit while allowing the unit some control over its internal temperature.
These filters should be checked periodically the foam filter should be replaced
when it becomes dirty or clogged, and the steel filters should be washed. Failure
to do so can interfere with internal environmental control and cause the unit to
overheat.

Second, both microphones have desiccant capsules designed to keep the micro-
phone cartridge dry. These capsules should be replaced periodically to prevent
damage to the microphone. The Larson-Davis microphones are especially par-
ticular in this regard. The desiccant cartridges are too small to hold much silica
gel, so they should be replaced every 3 to 4 months. If this is not done, the mi-
crophones are likely to fail. This is believed to be a contributing factor to the
frequent microphone failures observed during testing.

Third, the field unit should periodically be checked and cleaned inside. All of the
fans and the heater should be checked to ensure they are working (this can be
done using the “SET FAN ON” and “SET HEATER ON” console-mode com-
mands).

The field unit also contains two batteries (one powers the internal clock, the
other powers the nonvolatile RAM storage) that should be replaced every 5
years. The clock battery is on the central processing unit (CPU) board; the RAM
backup battery is on the PCF-1 disk emulation board.

34 CERL TR 99/99

Field Unit Service Mode

During testing, it often proved necessary to update the controller code stored in
the read only memory (ROM) of the prototype field unit. Because it is not possi-
ble to write a new image into the field unit’s boot ROM without physical access
to the unit, it was necessary for this update to take place through a different
mechanism. Therefore, the field unit’s control code, as well as the DSP code, can
now be upgraded remotely using the KERMIT in a special “field service” mode.

WARNING: Extreme care should be taken when using field service mode, as
damage to the field unit may result from its improper use. When the unit is in
field service mode, closed-loop climate control is disabled the system’s heater
and fan will not run. Do not use the field service mode if it is hot or cold outside
the monitor, as the unit may be damaged by temperature extremes. During the
summer, use the field service mode only at night. Also, if the new code uploaded
into the unit fails to boot, the monitor will need to be opened to be reset. In addi-
tion, if the controller code fails, neither the heater nor the fan will run. This will
result in damage to the field unit’s internal hardware.

Upgrading the field unit’s control program using KERMIT is fairly straightfor-
ward. Start by using the MS-DOS KERMIT program to connect to the field unit.
This can be done using the procedure described on page 21 for accessing the field
unit console mode. Once the field unit has been placed into console mode, issue
the command “KERMIT MODEM” to the monitor. This tells the field unit to
shut down and enter service mode. Wait approximately 30 seconds, and then hit
Ctrl-] followed by “c” to return to the KERMIT prompt.

Once you have the KERMIT prompt, test to make sure that the field unit suc-
cessfully entered service mode by typing the command “REM DIR”. This should
promptly return an MS-DOS directory listing. If no directory listing appears
within 15 seconds, hang up, wait approximately 2 minutes, and try again.

Upgrading the field unit’s control software using service mode is fairly easy. It
can be done by issuing the following commands from the KERMIT prompt:

SET FILE TYPE BINARY These commands set up
the KERMIT transfer pa-
rameters.

SET RECEIVE PACKET 1000
SEND <local path to MAIN.EXE> D:\MAIN.EXE This sends the new copy of

the control program to

CERL TR 99/99 35

temporary storage on the

field unit.

REM HOST COPY D:\MAIN.EXE C:\MAIN.EXE This copies the control pro-

gram from temporary stor-

age to permanent storage.

When this procedure has been fully executed, type “bye” to hang up and reboot
the field unit. When the field unit comes back up, use the “VERSION” command
to check the build date and verify that the correct version is running. (If the in-
correct version is running, it is possible that an error occurred in transferring
the code or in starting up the new code. If this happens, verify that the version
being uploaded works properly and send it again.)

Although the DSP software and the boot procedure are not expected to need
changing in the field, it is possible to change the DSP code and parts of the boot
sequence using the field service mode. (It is recommended that changes to parts
of the software other than the main control program be done by updating the
monitor’s FLASH ROM. FLASH ROM is discussed in the next section.) Up-
grading the DSP software or changing the startup sequence requires a slightly
more involved procedure. To upgrade the DSP software, the updated DSP code
files C:\MONDSP_1.OUT and C:\MONDSP_2.OUT must be loaded onto the
field unit using the above procedure. Second, a file labeled C:\STARTUP.BAT
must be created on the monitor, containing the following line:

SET DSP_PATH=C:

Finally, additions can be made to the startup procedure by including additional
commands in the STARTUP.BAT file. This file is called by AUTOEXEC.BAT,
and can be used to perform additional processing. When the STARTUP.BAT file
exits, the normal field unit startup procedure will continue.

Field Unit FLASH Update Procedure

Occasionally, it will be necessary to upgrade the boot image that the monitor
stores in its FLASH ROM. This is actually easy as the field unit includes a
self-update mechanism. Upgrading the FLASH ROM of a field unit requires two
parts that are not part of the main field unit:
• a standard 3.5 in. floppy disk drive
• a standard PC-AT keyboard.

36 CERL TR 99/99

To upgrade the FLASH ROM on the field unit, first turn the field unit off at the
power switch. Attach the floppy disk drive to the 34-pin floppy disk port on the
field unit’s CPU card (making sure to line up pin 1 at both ends) and to a power
connector coming off the power supply. Also, attach the keyboard to the 5-pin
DIN keyboard connector attached to the backplane. Then, simply insert an up-
dated image disk into the floppy disk drive, and press the “3” key as the field
unit is booting. The field unit will automatically read the image disk and store it
into its FLASH memory. As it does this, the drive activity light on the 3.5 in.
floppy disk drive will flash briefly, turn off, and then stay on for an extended pe-
riod of time. When it turns off again, it is safe to turn off the field unit and re-
move the added hardware the ROM update is complete.

In addition, it is possible to destroy all data stored in the field unit’s nonvolatile
RAM disk by pressing the “4” key on the attached keyboard as the field unit is
booting. This allows for easy recovery from a failed remote upgrade attempt.
Note that this deletes any stored data and configuration; all settings will be reset
to the defaults stored on the image disk that was loaded into the monitor’s
FLASH ROM.

CERL TR 99/99 37

4 Noise Monitor Testing Results

The prototype CERL Noise Monitoring and Warning System 98 was built pri-
marily as a test bed for several new techniques in noise monitoring and blast de-
tection, in an effort to increase the wind noise immunity of blast noise detection
systems. A secondary goal was to design and build a reliable noise monitoring
system that could replace the older monitors, taking advantage of modern tech-
nology. As a result, the blast detection algorithm and the DSP software that im-
plements it underwent extensive testing to prove that it is effective at rejecting
wind noise and identifying blasts. In addition, the control software underwent
extensive testing to weed out “bugs” and reliability problems in the laboratory
before release to the field. Testing is now underway at Fort Drum, where the
complete prototype field unit is serving as a noise warning station.

Laboratory Test Results for the Blast Recognition System

Benson (1996) provides more information on the blast recognition system. Re-
sults of blast/wind noise tests and measurement simulations are reported in this
section.

Results of Blast Noise Detection / Wind Noise Rejection Tests

The performance of the blast detection and wind noise rejection algorithm was
thoroughly tested in the laboratory. First, Monte Carlo simulation programs
were designed to test the performance of the algorithm on randomly chosen seg-
ments of wind noise, or wind noise with a blast present. Real wind noise and ar-
tillery blasts were digitized audio recordings for these simulations. For each dif-
ferent wind noise recording, the peak value of the noise was found. A random
number seeded from the computer’s clock was used to select a point within the
segment to insert a blast event. The blast was inserted with a given relative
amplitude with respect to the peak wind noise value found. The segment of the
wind file with the blast (including some lead and lag time surrounding the blast)
was then operated upon by the discriminator algorithm. Records of the number
of detections were tabulated. The false detection rate, defined as the percentage
of instances where a blast is detected when there was no real event, was tested
and tabulated by adding the blast into the wind noise at a relative level of -100

38 CERL TR 99/99

dB. For all practical purposes, the blast was absent. Several trials were per-
formed for each of several different wind noise recordings.

Table 2 shows the results from several of the simulations. Two different blast
signals were used in the simulations. The blasts differ in their spectral content,
one having its energy peak at 25 Hz (typical blast) and the other at a low 7 Hz.
The low frequency blast was used to test the discriminator’s ability to detect
blasts that may have traveled over long distances. Blasts incurring long propa-
gation distances are rarely a noise problem, as their sound pressure levels are
usually very low. They do, however, provide an interesting test of the discrimi-
nator’s ability. The simulations helped to find an optimum performance balance
between the ability to detect blasts and the ability to screen out events caused by
the wind noise. Through the many trials, general trends were observed con-
cerning the effect of each parameter on the performance of the algorithm.

Table 2. Blast detection probabilities (Monte Carlo testing).

Blast

Energy

Peak (Hz)

Blast

Level

(dB)

Total

Trials

Percent

Detected

25 3 750 99.2

25 0 1700 97.4

25 -3 1700 82.9

25 -6 1500 52.8

25 -10 1350 20.0

25 -100* 1700 0.12

7 3 750 98.5

7 0 1500 92.7

7 -3 1500 73.1

7 -6 750 47.5

7 -10 600 15.8

The “percent detected” values in Table 2 indicate acceptable performance. The
algorithm is able to detect 97.4 percent of blasts that are present with an ampli-
tude equal to the peaks in the wind noise surrounding the blast (blast level = 0
dB). This percentage raises to nearly 100 percent when the blast’s level is 3 dB
or more above the wind noise peaks. The false detection rate seems good at 0.12
percent. This value could be misleading, as it suggests that a false detection
would occur only once every 14 hours or so. This is not the case (as discussed
below). The detection rate falls off as the blast’s level drops below the wind noise
peaks. At -6 dB, over 50 percent of the blasts are still detectable. The detection
rates for the very low frequency blast (peak energy at 7 Hz) are less than those
for the normal blast. These results were better than expected, as the spectrum

CERL TR 99/99 39

of this low frequency blast has much less energy in the energy function band
than the typical blast.

Second, several different tests were performed to evaluate the real-time per-
formance of the discriminator. The audio tapes previously used as the source for
the wind noise characterization work, were played back in real-time into the
DSP-based discriminator. Also, further recordings were made under varying
wind conditions to provide additional real-time input for the system. The dis-
criminator was linked to a test bed, a two-channel version of the original CERL
Noise Monitoring and Warning System. This linking allowed the gathering of
data on the level of the wind noise and allowed real-time testing of the false de-
tection rate of the discriminator.

When the algorithm decided that a blast was present, it sent a 1-V direct current
(DC) signal to the monitor. The monitor was set up so that two conditions would
trigger on an event. The audio signal sent to the monitor must exceed the set
threshold, and the 1-V signal from the discriminator must be present. This
setup allowed one to view the performance of a system that had the discrimina-
tor included as part of the threshold condition for trigger. To compare the results
to that of a standard noise monitor, the same data tape could be played into the
monitor without the discriminator controlling the triggering. Many different
wind noise recordings were used as real-time input into the moni-
tor/discriminator combination. Table 3 compiles the results. On average, the
discriminator was able to reduce the number of false events by 97.5 percent.
This reduction is significant and useful. The results do not show any strong per-
formance dependence on wind speed, or on the type or absence of windscreens.

To test the system’s ability to detect blasts within wind noise, a computer-based
audio mixing system was used to create audio signals that included wind and
blast noise. A digital audio mixing program allowed a blast waveform to be
mixed in at any point in a wind noise signal, and at any relative level. These
audio tracks were then played into the discriminator. Both the normal and low
frequency blast waveforms were inserted into the wind noise files. The blasts
were inserted at various relative levels and at various positions within the files.
The detection rates observed during this testing were at least as good as those
found in the Monte Carlo simulations mentioned previously. Unfortunately, no
practical way was found to execute a random test in this situation. All that can
be said is that the detection rates given previously seem to be good representa-
tions of the actual real-time performance.

Recordings of wind noise with blast noise present were made over 2 days near
Fort Riley, KS. The blast noise source was from a training range approximately

40 CERL TR 99/99

4 km away where 120 mm artillery were being fired. Unfortunately, the nor-
mally high wind speeds seen in that area were not present during the 2 days of
recording. The wind speed varied from 0 to 5 m per second (mps) with the aver-
age being close to 3 mps. The two microphones were spaced vertically with a 1.5-
m separation, and the top microphone was 5.5 m above the ground. Standard 8-
cm diameter foam windscreens were used. The average peak sound pressure
level for the blast noise was 108 dB. The recordings were analyzed in the same
manner as the recorded data mentioned earlier. A threshold of 100 dB was used
for the analysis. All 62 blast events that occurred during the 7 hr of recording
were detected by the discriminator. The discriminator also reduced the number
of false events due to wind noise from 239 events to 9 events — a 96.2 percent
reduction.

Table 3. Blast detection algorithm tests on Fort Riley data.

Tape

ID

Threshold
sound

pressure
level

(dB)
Threshold

Events

Threshold
Events with

Discriminator

False
Event

Reduc-
tion

(%)

Average
Wind Speed

(m/s)

Wind
Screen
Used

Total
Recording

Time
(min)

1 115 724 19 97.4 9.4 None 37

1 120 572 10 98.3 9.4 None 37

1 124 405 1 99.8 9.4 None 37

2 95 359 10 97.2 4 8 cm foam 120

3 95 290 7 97.6 4 8 cm foam 45

4 100 219 8 96.3 3.6 None 4

5 100 509 7 98.6 3.6 None 7

6 105 335 11 96.7 5.8 8 cm foam 25

7 105 233 11 95.3 5.8 8 cm foam 38

7 100 176 5 97.2 5.8 Specialized* 38

8 108 500 12 97.6 8 8 cm foam 82

8 103 349 6 98.2 8 Specialized* 82

Results of Cross-Multiplication in Blast Noise Measurement Simulations

As a requirement of the blast detection algorithm, the new monitor uses two
vertically spaced microphones. The effect of using the cross-multiplication of
these two channels instead of the square of one channel to measure the peak and
SEL of blast events was studied with computer simulations. It was thought that
the accuracy of blast noise measurements taken in the presence of wind noise
could be improved by cross-multiplication, which would cancel some of the wind
noise due to its being relatively uncorrelated between the two microphones.
Monte Carlo type simulations were developed in which a blast was randomly
inserted into wind noise at a given relative level and measured on each channel
separately using the cross-multiplied signal. These measurements were then

CERL TR 99/99 41

compared with the measurement of the blast without any wind noise. The
results show definite improvement in the accuracy of measurements of both the
peak and SEL of the blast when the cross-multiplied signal is used. Table 4
summarizes the results of more than 70,000 simulations at each insertion level.
Note that the simulations were also repeated for the case of a 20-degree
propagation tilt so that the blast signals were not exactly aligned at each
microphone. As seen in Table 4, the results with the tilt were not significantly
different than those without the tilt.

Table 4. Measurement improvement for cross product.

Blast level relative
to the wind

(Leq basis, dB)

Average peak level
measurement im-
provement (dB)

Average SEL
measurement im-
provement (dB)

Propagation
Tilt

+ 5 2.5 8.8 None

+10 1.4 7.9 None

+20 0.2 3.4 None

+ 5 2.5 8.7 20º

+10 1.3 7.2 20º

+20 0.2 2.7 20º

42 CERL TR 99/99

5 Implementation Details

CERL Noise Monitoring and Warning System 98 software consists of two major
types of software. The first type is the DSP code that runs on the TI TMS
32C040 DSPs. This consists of two programs for each of two DSP chips. One
DSP chip accepts incoming data from the ADCs attached to the DSP board. It
filters the incoming data (the C-weight filter is implemented as a second-order
infinite impulse response [IIR] filter), records integrals and peaks, and passes
data off to the second DSP chip for blast detection. The second DSP chip accepts
decimated data from the first chip (it accepts one sample for every 24 taken by
the A/D), and analyzes the data using a running Fast Fourier Transform (FFT)
and cross-correlation tests. The cross-correlation and the relative strength of
two FFT frequency bins versus the entire signal are then used to determine
whether it is likely that a blast is in progress. All data are transferred to the
host CPU (an Intel 486-based embedded PC card attached to the ISA backplane)
through a shared memory buffer on the DSP card.

The second type of software is for noise monitor control. Running on the i486
host CPU, this program is responsible for control of the monitor. It records the
data collected and analyzed by the DSP chips, identifies data likely to represent
loud blasts, queues it, and sends it off to the base station. It also performs sys-
tem maintenance tasks such as automatic calibration, environmental control,
and resetting and configuring the DSP CPUs and other attached hardware. This
software, along with MS-DOS, KERMIT (for remote management and code up-
dates), some other utilities, and the DSP code, is stored in 1 MB FLASH ROM on
the virtual disk board. Data that include DSP and host control code updates and
the storage queue are stored in 1 MB of SRAM also on the virtual disk board.

DSP Software Details

Introduction

The new CERL noise monitor is functionally comprised of two main parts: the
real-time DSP code and the PC interface program. The DSP code runs on two TI
TMS320C40 DSP processors sited on a Signal Processing DPC40B board from
Spectrum (Burnabary, BC, Canada). One of the two processors runs a blast
recognition algorithm and the other handles real-time measurement processes

CERL TR 99/99 43

including frequency weighting, computing the sum-of-squares and maximum
values, and providing all relevant information to the PC interface program. The
PC interface program takes tenth-second sum-of-squares and maximum levels
information from the DSP and computes the standard monitor metrics as well as
handling communications and interpreting commands from the base computer.

This chapter describes the code written for the two DSP chips used in the new
monitor. The two processors are identical, except that only the first processor
(CPU_A) can access the A/D samples and communicate with the PC via the
DPRAM. Communication between CPU_A and the other processor (CPU_B) oc-
curs via several high speed buffered communication ports. The blast recognition
algorithm running on CPU_B will be described first.

Code for CPU_B: Blast Detection and Wind Noise Rejection Algorithm

The algorithm implemented in this DSP program was designed in 1995 and is
explained in more detail in Benson (1996). The program is named MON_2.
Throughout this section, portions of the code will be referenced by line number
from the listing of the code in Appendices D1 and D2 of this report.

The algorithm takes samples at a rate of 2 kHz and computes two frequency bins
from a length 128 FFT. These bins are combined through squaring the individ-
ual points, cross multiplying across the two channels, and summing the cross
multiplied values. This “energy” value is then stored in a circular buffer. The
samples for each data channel are also stored in circular buffers. The normal-
ized zero-lag cross correlation between the two data channels is also computed
using a data block of length 64 (23 ms). The history of energy values is searched
for its maximum value from the end of the record to the current time minus 70
samples. The current energy value is then divided by the maximum found and
becomes the decision ratio. The algorithm decides that a blast is present if the
decision ratio is above 25 and the correlation is above 70 percent. The program
receives its data samples over C40 communications ports 3 and 4 from the pro-
gram MON_1, which runs concurrently on CPU_A. MON_2 sends a blast detec-
tion flag to MON_1 via communication port 3. The integer number flag is equal
to 1 if there is a blast and 0 if otherwise.

In lines 14-26, three circular buffers are initialized in memory. The section la-
bels “chahist,” “chbhist,” and “ehist” are mapped to specific points in the proces-
sor’s memory map by the MON_2.CMD file (linker command file). The labels
“CHA,” “CHB,” and “EH” point to the first position in each buffer that is initial-
ized to hold all zeros by the .space directive. The data memory section begins at
line 29. All sections are defined in the linker command file. Lines 31-42 define

44 CERL TR 99/99

the memory locations for the stack, the interrupt vector table, the data histories,
and the control and buffers for the communication ports. Lines 44-85 simply
make global variables of all the labels used in the program so that they can be
used by name in the debugger. The rest of the data section (lines 87-131) serves
to initialize several variables and to set up constants used in calculations. Note
the value of the internal interrupt enable mask (IIEMASK), which will be used
to “turn on” the interrupts associated with communication ports 3 and 4 from
which the new data samples originate.

Line 134 starts the .text section, which contains the main code. The uncondi-
tional branch statement brings the program counter down to the start of the ex-
ecutable code. The .word directives on lines 137-155 define the contents of the
interrupt vector table. Only two interrupts are defined: ICRDY3, which inter-
rupts when a new word has come to the input buffer of communication port 3,
and ICRDY4, which is similarly defined for port 4.

Line 158 marks the beginning of the executable part of the program. The data
pointer, stack pointer, and interrupt vector table are loaded. Line 169 begins a
section of code designed to set up the communication ports and empty out their
input buffers. Lines 169-174 load the address of the ports and their control reg-
isters into address registers. Lines 176-181 halt the input FIFOs∗ for the two
ports so that no new data comes in while the initialization process continues.
Lines 184-194 test to see how many words are in the input FIFO for port 3. If
words are present, they are read out to empty the FIFO. This same procedure is
then done for port 4 in lines 197-207. Lines 210-211 enable the two interrupts
ICRDY3 and ICRDY4 in the internal interrupt enable register (IIE) and then
globally enable interrupts in the status register (ST). Lines 213-218 then restart
the input FIFOs for the two ports. The last three instructions (220-222) before
the main program loop simply load the circular buffer start points into address
registers.

The main loop of the program starts on line 230. Lines 229-235 serve to test two
flags, READYA and READYB, which are set high in the interrupt service rou-
tines that receive the data over the communication ports. The service routines
(637-640 for channel A, port 3, and 646-649 for channel B, port 4) simply read
from the input FIFO, store the data in a variable, and then set the READYA or

∗ FIFO – first in, first out refers to input queues.

CERL TR 99/99 45

READYB flag to 1. When both ready flags are equal to 1, the computation be-
gins after the flags are reset to 0.

The main computation part of the program begins on line 244. First, the new
data samples are loaded, converted to floating point, scaled down by 10-4,
rounded, and written to the circular buffers. Before writing the current samples
to the circular buffers, the oldest value in a length 64 sub-block of the buffer is
read (lines 265-272) for use in the correlation computations. Line 295 starts the
computation of the first frequency bin for channel A. The frequency bins (points
2 and 3 of a length 128 FFT) are computed using a continuous FFT (see Benson
1996 for details). These FFT point calculations occupy lines 295-396. Next, the
square of the magnitudes of the two FFT points from each channel are computed
(lines 404-429). Lines 436-443 compute the current “energy” value. Then the
maximum energy value in the circular buffer (of length 690) is found in lines
449-458. The buffer is simply stepped through, comparing the value at that loca-
tion to the maximum found so far during the search. Only the region from oldest
to newest -70 samples is searched. Once the maximum value is found, its in-
verse is computed using the fpinv subroutine (lines 586-628) and the decision
ratio is formed by multiplying this inverse by the current energy value (lines
459-464). The gap in the search region exists to ensure that a peak in the energy
values (due to the presence of blast) does not get divided by a value within that
peak area.

The next section of code computes the normalized cross correlation over the last
64 samples. Lines 473-487 compute the autocorrelation of channel A. For the
purpose of this program, the autocorrelation is defined as the sum of the squares
of the 64 most recent samples. This sum is computed by adding in the square of
the current sample and subtracting the square of the oldest sample. This oldest
sample value was found earlier in the program just before the new data were
stored in their circular buffers. Key to the long-term stability of this calculation
is the inclusion of rounding operations. If these are removed, small errors build
up over time and create completely inaccurate correlation values. The autocor-
relation for channel B is computed in lines 491-505. The cross correlation of
channels A and B is computed in lines 510-537. First the sum of the cross multi-
plication of the last 64 samples is computed in the same manner as for the auto-
correlations. Then, to get the square of the normalized zero-lag correlation ratio,
the cross correlation value is divided by the product of the autocorrelation val-
ues. The square of the ratio is computed instead of the actual value because of
the expense in computing the square root of a number.

The decision section of the program follows next. First, the value of the decision
ratio is compared to the threshold level of 25 (lines 549-554). If the threshold is

46 CERL TR 99/99

not met or exceeded, a 0 is written to communication port 3 (574-576), signifying
that no blast event is currently occurring. If the decision ratio threshold was
met or exceeded, then the normalized zeroth lag cross-correlation value is com-
pared to its threshold of 70 percent (558-563). If the correlation is greater than
the threshold, then a 1 is written to communication port 3 to alert processor A
that a blast event is occurring (576-570). If the correlation threshold is not met,
then a zero is written to port 3. At this point, the algorithm is finished with the
current sample’s calculations, and the program loops back to line 229 and waits
for the next pair of samples to become available.

Code for CPU_A: Noise Monitor Functions

The DSP code for CPU_A (MON_1) computes the raw data in tenth-second blocks
(TSBs) needed by the PC interface program, which then computes the noise met-
rics such as peak SPL and SEL. The DSP knows nothing of the calibration set-
tings or whether the unit is in a manual sample mode or in threshold mode. The
raw data is passed from CPU_A to the PC interface program via the DPRAM.

With the inclusion of the blast recognition algorithm, this new monitor has two
microphones. The two channels of data are sampled using a Loughborough
Sound Images Crystal analog daughter module attached to the DSP carrier
board. The A/D is a 16-bit dual-channel delta-sigma type. The module is pro-
grammed in the initialization section of MON_1 to sample at a rate of 48 kHz.
MON_1 is also responsible for sending sampled data to MON_2 (blast recogni-
tion algorithm) at a rate of 2 kHz, requiring decimation by a factor of 24.

MON_1 computes the sum of squares of each channel in TSBs, the maximum
value in the block, the position of the max within the block, and the number of
blast recognition flags reported within the block. These computations are also
done for the c-filtered version of each channel, the cross-multiplication of the two
channels, and the c-filtered cross-multiplication. Since the blast recognition al-
gorithm operates at a sampling rate of 2 kHz, blast recognition flags are only
available every 24 samples. Accordingly, the TSBs are broken down into mi-
croblocks of length 24 samples. There are then 200 microblocks in every TSB.
For each microblock, the sum of squares and maximum value information is
computed and a blast recognition flag is gathered from CPU_B. The sum of
squares information is then added up to create the TSBs and the maximum
value is kept up to date through all of the microblocks to give a final maximum
value for the TSB. The position of the maximum value is given only as the num-
ber of the microblock in which the maximum value occurred. A running total of
the number of microblocks in which the blast recognition flag was high is also
kept for the TSB.

CERL TR 99/99 47

The remainder of this section is a detailed, line-by-line description of the CPU_A
code, MON_1. The program listing begins by setting up some data needed for
the c-filtering operation. Line 32 sets the section to “data.” Lines 34-43 enter
the coefficients for the c-filter. Lines 51-69 create memory locations for the de-
lays used in the c-filter. In lines 77-92 several important addresses are set up,
such as the interrupt vector table, the locations of channel A and channel B data,
and the communication ports. In line 93 the starting address of the DPRAM is
defined. Line 94 designates a location in the DPRAM where the starting address
of the data for the current TSB in the DPRAM. Lines 105-119 create variables
used for storing the results of microblock calculations. The next portion of code
is placed into a different area of memory as defined on line 126 in the .sect direc-
tive. The data in this section are sent to the PC interface via the DPRAM. To
send this data quickly, indirect addressing is used, which necessitates the data
starting at an easily known point in memory. This is accomplished by simply
starting a new “section.” The starting address of this section is set to a variable
in line 121.

The data that are sent to the PC interface program via the DPRAM are stored in
a circular buffer in the DPRAM. The buffer is of length 950, which corresponds
to 50 TSBs (19 words x 50 blocks = 950). The memory space for this circular
buffer is set up starting with the .sect directive in line 159. The section
“DP_circ” is at the beginning of the DPRAM. The .space directive in line 161 fills
950 consecutive memory locations with zero, initializing the buffer.

Line 163 starts the program text section. Lines 169-185 comprise the interrupt
vector table. This table shows that only one interrupt is defined, ANALOG
(IIOF1), which corresponds to the new data samples arriving from the A/D.
Lines 187-269 set global variables.

Line 274 starts the actual executable code. In lines 274-278 the data pointer,
stack pointer, and interrupt vector table are loaded with their proper addresses.
The next group of code in lines 282-302 sets up the A/D board for proper opera-
tion. Its sampling rate is set, it is reset and calibrated, and the key value is
loaded into the analog configuration register. Next, in lines 304-307 the memory
locations of the channel A and B data, the interrupt acknowledge, and the inter-
rupt mask register are loaded into address registers for later use. In lines 311-
314, address registers are loaded with the addresses of the output FIFOs for the
communication ports used to transmit sample data to CPU_B, of the input FIFO
from CPU_B that carries the blast flag, and of the beginning of the DPRAM.

The next section of code empties in the input FIFO for communication port 0,
which contains the blast flags sent by CPU_B. This action will synchronize the

48 CERL TR 99/99

two processors. The number of words in the FIFO are read from the port’s con-
trol register. The FIFO is then read repeatedly until all words are read. The
DSP is then ready to enable the analog interrupt and begin collecting data. The
IIOF1 interrupt is enabled in line 337 and the global interrupt enabled on the
following line.

The noninterrupt service routine part of the program is contained on one line
(341). Here the program waits for the A/D interrupt so that the next set of sam-
ples can be processed. The rest of the program is the ANALOG interrupt service
routine.

The interrupt service routine begins with the reading of the two sample values
from the A/D. The integer values are stored for future use as outputs (lines 355-
56). The integer words are left shifted into the highest 16 bits for computation
(lines 357-58). In lines 360-366 the decimation counter is loaded from memory
and compared to 23 (decimating by a factor of 24: samples 0:22 thrown out). If
the counter has reached 23, then the current samples are sent to CPU_B for use
in the blast recognition computations. If it is not time to send the data, then the
counter is incremented and the program moves on to the filtering stage. In the
next section of code (lines 368-390), the current sample data are sent over the
communication ports to CPU_B. Before sending the data, however, the program
checks to see if any words are in the output FIFO of port 0. If one or more words
are in the buffer, then the data are not sent to allow the two processors to “get in
sync.” After either sending the data or allowing for synchronization, the pro-
gram moves on to the c-filtering operation.

The next portion of the code filters the current sample data using an IIR c-
weighting digital filter. The code implemented here was largely taken from the
TI TMS320C4x User’s Guide 2. See appendix 3 of the user guide for an explana-
tion of the design of this filter. The filtering of both channels of data fills lines
408-534.

On lines 541-544 the decimation counter is checked against 0 to see if the cur-
rent samples will complete a microblock. The counter is compared to zero be-
cause the microblocks bound on the sending of decimated data to CPU_B and the
counter would have been zeroed earlier in the program if this was the case. If it
is not the end of a microblock, then the code continues with the sum of squares
computations for “NOT END OF MICRO_BLOCK.”

Lines 553-588 constitute the computation of the squares for the case where the
current samples do not end a microblock. The sum of squares are computed by
simply adding the square of the current data (flat and c-weighted) to running

CERL TR 99/99 49

sums for the current microblock. The multiplication of the two samples (again
flat and c-weighted) is added to running sums as well. In lines 592-624 the ab-
solute value of the current data samples (flat and c-weighted) are compared to
the corresponding maximum values found thus far in the microblock. Also, the
absolute value of the cross-multiplied samples is compared to its previous maxi-
mum value. If the individual values are not new maxima, then the program goes
on to the next comparison. If the current data reflect a new maximum, then the
value is written to a memory location for future comparison. On line 624 the
program jumps to the end of the interrupt service routine, as all the computa-
tions needed for this case are done.

If the current samples ended the current microblock, then the program would
have jumped from line 544 to line 638, where the computations for the end of a
microblock occur. The first thing done in this section is to read the blast recogni-
tion flag sent by CPU_B over communications port 0. First, on lines 638-645, a
flag called FIRST_TIME is tested. If this flag equals 1, then it is the first time
that the blast flag is being read since the code started. No blast flag will be
available from CPU_B the first time, so the program loads a 0 into the blast flag
and then jumps to line 649 where the current flag is stored. It is then added to a
sum for the current TSB. If it is not the first time, the blast flag is read on line
646 from communication port 0 and then stored and summed.

Next, on lines 658-691 the sum of squares is computed in the same manner as
before. Then on lines 698-730 the final maximum values are determined for the
microblock using the same method as before. Now that the microblock calcula-
tions have been completed, they need to be added to the current TSB. On lines
738-761 the sum of squares value for each channel (flat and c-weighted) and the
cross multiplication of channels are added to a corresponding value for the cur-
rent TSB. Then in lines 769-806, the maximum values found for the ending mi-
croblock are compared to the maximum values for the TSB. If a current mi-
croblock maximum is larger, the new value is stored and the microblock number
(0-199) is stored as the position of the maximum within the current TSB. In
lines 813-825, the microblock variables are cleared so that they are ready for the
next block.

Now, the microblock counter is checked to see if the current microblock ends a
TSB. If it does not, the counter is updated and the program jumps to the end of
the interrupt service routine. If the block does end a TSB, then the program
goes on to line 847, where the TSB data are moved to the appropriate location in
the DPRAM for the PC interface program to read it. First (on line 847) the size
of the circular buffer in DPRAM is loaded into the block size register to allow for
the circular addressing. The current value of AR7, the address in DPRAM where

50 CERL TR 99/99

the first word will be written, is loaded into the location in DPRAM called
CURRENT_ADDR so that the PC interface program knows where the most re-
cent data are being written. Note that AR7 has not been modified since the last
time the buffer was written and the last write statement incremented AR7 so
that it points to the correct position. In lines 855-905 all the tenth-second data
variables are stored to the DPRAM circular buffer. Indirect addressing is used
so that parallel loads and stores can be implemented. All of the floating point
numbers among the data are first converted to IEEE∗ format, which is most
easily read by the PC interface program. Lastly, the microblock counter and all
the TSB variables are zeroed in lines 909-935.

The last section of code is the end of the interrupt service routine. In this section
the current sample for channel A is output to channel A on the D/A converter,
and the blast flag is shifted (multiplied to make larger) and output to channel B
of the D/A converter. The program then returns to line 341, where it waits for
the next samples to be available and the processes to begin again.

Controller Software Details

The host software forms the interface between the DSP code and the outside
world. The host code controls all of the external hardware on the monitor: the
microphone calibrators, the modem, fans, the heater, and the wind meter. (The
microphones and the microphone amplifier are largely self-contained and simply
feed directly into the DSP board.) The noise monitor host code was developed
using Borland C++ version 3.1 on the MS-DOS platform. It uses low-level calls,
input/output (I/O) and inline assembly. These dependencies make it unlikely
that the code will compile on a more modern compiler.

Controller Software Run-time Files

Table 5 is a list of files contained in the FLASH ROM (A:) on the noise monitor
and a description of each file’s function.

∗ IEEE = Institute for Electrical and Electronics Engineers

CERL TR 99/99 51

Table 5. Files contained on the noise monitor’s FLASH ROM.

 Size Filename Description
 412 CONFIG.SYS DOS configuration file

 54645 COMMAND.COM DOS command processor file
 533 MONITOR.BAT Noise monitor and field service mode startup file
 632 C4XLOAD.ROM DSP loader software

 2924 NETAPI.CFG DSP board configuration
 1103 BOARD000.CFG DSP board configuration
 906 BOOT.OUT DSP boot software

 1010 EDBOOT.OUT DSP loader software
 8588 MONDSP_1.OUT Field unit DSP software for CPU #1 (C-weight filter)
 6896 MONDSP_2.OUT Field unit DSP software for CPU #2 (blast detection)
 748 EDLOAD.ROM DSP loader software

 6908 CMD_HELP.HLP Field unit command help file (HELP <command>)
 105116 KERLITE.EXE KERMIT executable for field service mode

 1076 MSRL314.PCH KERMIT patch file
 4320 MSKERMIT.INI KERMIT initialization file
 1126 MSCUSTOM.INI KERMIT initialization file

 167116 MAIN.EXE Field unit controller software executable
 14019 OPT_HELP.HLP Field unit parameter help file (HELP SET <option>)
 22856 WDMTSR.EXE Watchdog TSR for field service mode

 221 AUTOEXEC.BAT Boot batch file
 710 MON_CFG.DAT Default (ROM) configuration file
 710 BAK_CFG.DAT Copy of the default configuration file

 24681 DOS/LIST.COM File viewer utility
 22974 DOS/FORMAT.COM MS-DOS disk formatting utility
 16930 DOS/XCOPY.EXE MS-DOS file copy utility
 15718 DOS/DEBUG.EXE MS-DOS debugger
 12241 DOS/CHKDSK.EXE MS-DOS file system check utility
 17164 DOS/SLED.COM Simple text file editor
 5406 DOS/DRIVER.SYS MS-DOS disk driver (used for SRAM and FLASH disks)

 29136 DOS/HIMEM.SYS MS-DOS high memory manager
 11917 DOS/PCFBERAS.EXE Utility to erase PCF-1 FLASH ROM
 5861 DOS/DOSKEY.COM MS-DOS command-line editing utility

 29378 DOS/PKUNZIP.EXE Uncompresses ZIP-compressed files
 18319 DOS/MOVE.EXE MS-DOS file move utility
 28729 DOS/SLED.DOC Text editing utility
 40001 DOS/PCFBCOPY.EXE Utility to update PCF-1 FLASH ROM
 10748 DOS/DISKCOMP.COM Floppy-disk compare utility
 13335 DOS/DISKCOPY.COM Floppy-disk copy utility
 5873 DOS/RAMDRIVE.SYS MS-DOS RAMDISK creation driver

 30 DOS/REFLASH1.BAT Part of automatic reflash utility
 5 DOS/REBOOT.COM Reboot the system

 2949 DOS/PCFSRDVR.SYS PCF-1 SRAM disk driver
 97 DOS/REFLASH.BAT Automatic reflash utility (hit “3” after numlock light turns on)
 61 DOS/KILLROM.BAT Erase SRAM disk (hit “4” after numlock light comes on)

The 1 MB SRAM disk (C:) on the noise monitor is used to store the data queues
and configuration information. Substantial extra space is also available on the
SRAM disk for field upgrades both the field unit control software and the DSP
software can be upgraded by sending new code into the SRAM disk. The DATA
directory in the SRAM disk contains two copies of the data queue
(MON_DATA.DAT and BAK_DATA.DAT). The two copies are updated sepa-
rately. If for some reason an update is interrupted, the corrupted queue file will
be rewritten using the data from the remaining queue file. This gives the data
queue substantial immunity to power failures. (In testing, data were occasion-
ally lost before the wind meter IRQ bounce problems were corrected. Since then,

52 CERL TR 99/99

no queue failures have been observed.) These queues are 256 K (262,144 bytes)
long and hold up to 2,048 noise events. A checksum is used to verify on-disk and
in-memory data as a guard against corruption. If these files are not found or are
found to be corrupted, an empty queue will automatically be created.

The monitor’s configuration is stored on the SRAM disk in the 710-byte files
“MON_CFG.DAT” and “BAK_CFG.DAT.” These two files are updated independ-
ently, and both provide a checksum to guard against corruption. These files con-
tain the calibration data, thresholds, and all of the “SET” option parameters. If
these files are not found or are found to be corrupted, the default configuration
will be copied from the MON_CFG.DAT file stored in the FLASH ROM.

Controller code updates are stored on the SRAM disk in the file “MAIN.EXE.” If
this file is present, the startup code will automatically execute it instead of the
version of the controller code stored in ROM. Some rudimentary protections
against invalid controller code exist, but it is entirely possible that the field unit
will be rendered inoperable by an invalid version of MAIN.EXE stored in the
SRAM. Therefore, it is very important to use test controller code updates exten-
sively before updating the field units, and to exercise caution to prevent invalid
or incomplete MAIN.EXE files from being stored in SRAM.

Controller Software Boot Process and Field Service Mode

The field unit controller boots into MS-DOS and uses the standard MS-DOS
AUTOEXEC.BAT and CONFIG.SYS files to control the boot process. These files
are responsible for setting up the field unit’s environment, as well as handling
the transition into field service mode and rewriting the FLASH ROM. All of the
MS-DOS batch files and configuration files are attached as Appendix D.

The CONFIG.SYS file includes a standard boot menu, which can be used to per-
form various maintenance functions. The default option allows the field unit to
boot normally and collect data. If another option is chosen (by attaching a key-
board and hitting a number plus <Enter> after the NumLock light comes on),
the field unit will go into an administrative mode:

1 Normal running; default

2 Service mode; boot to an MS-DOS prompt. Requires a VGA card

3 Reflash mode; erase and reprogram boot FLASH ROM from a floppy disk

CERL TR 99/99 53

4 Reset all stored data; erases the queue, configuration, and program up-
dates on the SRAM disk.

The CONFIG.SYS file also loads a few required device drivers. These drivers
include PCFSDRVR.SYS, the driver for the SRAM virtual disk, and
RAMDISK.SYS, which creates an in-memory virtual disk that is used as tempo-
rary storage or “scratch space” during the field upgrade procedure.

The AUTOEXEC.BAT file automatically sets up a few environment variables,
such as the search path and the DSP code location, and then runs the correct
code for the specified operation mode. If a reflash or a reset is specified, that
code is dispatched; otherwise, the file “MONITOR.BAT” is called. This batch file
checks to see if an update to MAIN.EXE is stored on the SRAM disk. If so, it
executes the update. If not, it executes the version of MAIN.EXE stored in the
FLASH ROM. If for some reason this first invocation of MAIN.EXE fails, the
monitor will automatically attempt to start the version stored in the FLASH
ROM.

The monitor startup batch file also handles the field unit’s transition into service
mode. (The field unit transitions out of service mode by rebooting.) This is done
using the exit code returned by the field unit’s control software to the batch file.
A return code of 101 or 102 indicates that the field unit should transition to
service mode 101 means that the connection will be on COM1, and 102 means
that the connection will be on COM2. The batch file then starts the watchdog
TSR (WDMTSR.EXE), which reboots the system when the indicated COM port
disconnects, and starts KERMIT. KERMIT automatically loads a configuration
file written by the field unit control software on startup. This file indicates the
COM port and speed to use for the link. The watchdog TSR monitors the com-
munication link. If a link loss is detected, the TSR will allow the system to re-
start after waiting approximately 1 minute for any pending operations to com-
plete. In this way, the field unit will automatically restart without corrupting
any data if the remote user should fail to explicitly log out of field service mode.

Source Code Overview

The field unit’s overall control software is not a true real-time system; it runs a
cycle of various tasks to be performed, but no exact timing measurements of
these tasks has been made. Generally, the 486DX2/66 control processor is fast
enough to keep up with the tenth-second interval between blocks coming from
the DSP board; however, this is not guaranteed. In fact, certain tasks (such as
updating the queue data in the SRAM disk) can take longer than a tenth of a
second. However, because file system accesses are short (each access only

54 CERL TR 99/99

updates one “page” of the on-disk memory queue or the configuration file) and
spaced between 15 DSP checks, the 50-element circular queue on the DSP board
will smooth out these delays. Therefore, in practice, no data from the DSP are
lost. However, the queue contents are reread when a threshold block is triggered
 the pre-trigger data are read out of the older TSB still in the queue.
Therefore, at most 4.5 seconds of pre-trigger data is available; otherwise, delays
may cause incorrect data to be read from the queue.

The field unit control software is split into several modules. Each of these mod-
ules consists of a C or C++ source file (.CPP or .C extension) and a header file
that contains the declarations for functions and variables used in that module.
The source modules are split up into the following functions.
• DSP.CPP: Handles all data collection and the interaction with the DSPs.

Retrieves data from the shared memory, accumulates the tenth-second DSP
blocks into longer blocks. Identifies data exceeding predefined threshold val-
ues to trigger data storage. Also accepts and accumulates data from explicit
commands and microphone calibration. It also maintains a queue of com-
mands that will require future attention.

• DSPERR.CPP: Prints out error messages on DSP initialization.
• PROTOCOL.CPP: Handles the protocol for communication with the base

station. Responsible for receipt, generation, and acknowledgment of data
blocks, placing and receiving calls, modem initialization and control, transmit
pacing, and other low-level data communications functions.

• SERCON.CPP: Provides functions that allow the field unit’s physical console
to be reflected to the modem or serial port.

• CMD.CPP: Contains the code that parses console commands entered by the
user and the code for implementation of all of the console commands.

• MAIN.CPP: Contains all of the initialization and shutdown commands and
the main loop. Also contains the code that handles the field unit console, and
triggers certain periodic tasks such as automatic calibrations.

• DATA.CPP: Controls the maintenance of the data queue, both in memory
and on disk. Responsible for synchronizing the main data queue with the
virtual disk, maintaining redundant copies, as well as allowing FIFO access
to data in the queue by the noise monitor.

• CONFIG.CPP: Maintains the noise monitor configuration structure (struct
config_struct cfg); synchronizes the in-memory configuration data with the
configuration on disk. Also contains the compiled-in defaults for bootstrap-
ping.

• PACKET.CPP: Responsible for the high-level communications between the
base station and the monitor. Handles the high-level block format, sending
queue data, and base-station control. This module duplicates the block han-
dling characteristics of the original CERL noise monitor. To do this, it drops

CERL TR 99/99 55

a substantial amount of data collected by the new software. It may be re-
placed to allow this data to be collected.

• DATACONV.CPP: Converts IEEE floating point, integral, and date values
from noise monitor internal data into the ASCII∗ data formats expected by
the base station program. Used extensively by the high-level packet con-
struction in PACKET.CPP.

• PPORT.H: Contains code to control the parallel port data output, which is
used to control the microphone calibrators, status LED, fan, and heater.

• WIND.CPP: Includes code to read the wind meter interrupt, keep track of
the passage of time, and return the actual wind speed (in miles per hour).
Also maintains a database of different wind meter types (currently only used
for console display).

• ENVIRON.CPP: Tracks current environmental conditions (specifically, am-
bient temperature inside the noise monitor casing and voltage supplies), is-
sues warnings when necessary, and attempts to keep the temperature within
an acceptable range using the heater and fan.

• WDT501P.C: This module controls the Industrial Computer Source WDT-
501P watchdog timer board. This board contains several components, in-
cluding a thermal sensor, voltage sensors, the watchdog timer, and isolated
inputs, all of which can generate an interrupt. This module initializes the
board, starts the watchdog, and handles interrupts coming from the board.
(These interrupts are passed to MAIN.CPP, which ignores most interrupts
and dispatches the wind meter interrupts coming from the isolated inputs to
WIND.CPP.)

• IBMCOM.C and CIRC_BUF.C: These two modules, put together, form the
serial driver used for communication with both the serial console and modem
interface.

At the highest level, the flow of control in the field unit control software is very
simple. The MAIN module initializes the hardware and software modules in the
field unit software, loads the configuration data and the data queues from the
SRAM, and then calls the DSP module to synchronize the controller with the
DSP. Then the field unit enters the main loop, which cycles through the follow-
ing tasks:
• check for an incoming tenth-second data block from the DSPs (calls

DSP.CPP)

∗ ASCII = American Standard Code for Information Interchange

56 CERL TR 99/99

• check DSP service event coming due (calls DSP.CPP)
• check for incoming base station activity (calls PROTOCOL.CPP)
• update the status displays
• perform closed-loop environmental control (calls ENVIRON.CPP)
• flush an unwritten queue or configuration data block to disk (DATA.CPP and

CONFIG.CPP)
• schedule automatic calibrations if due
• restart serial port drivers if necessary (so the baud rate can be changed on

the fly)
• check for midnight and schedule a reboot if so.

The main loop is executed until a shutdown is requested (by setting the quit
variable to 1). After a shutdown is scheduled, the main loop exits, and the sys-
tem shuts down. (Going into service mode also shuts down the field unit; it sim-
ply sets the return code variable to 101 or 102 to indicate that the field unit is
going into service mode.) First, any unwritten queue and configuration data are
written out; then the hardware is shut down. The hardware watchdog is then
programmed to reboot the system in 30 seconds. This step was added to prevent
a failure starting up KERMIT or the watchdog TSR from causing the field unit to
become unresponsive.

Data Queue File Format

The data is stored on disk in two identical queue files (MON_DATA.DAT and
BAK_DATA.DAT). Both on disk and in memory the queue is stored as a circular
buffer. Note that the head and tail pointers are not stored on disk, so all of the
empty blocks in the queue are required to be contiguous. The tail (oldest ele-
ment) of the queue is located after the last empty block, and the newest element
in the queue is located before the first empty block. (Empty blocks are flagged by
0 (NUL) in the type field.) At least one empty element must always be in the
queue to ensure that the top and end of queue pointers can be set when the data
are loaded.

All queue elements are 128 bytes. If the DataBlock structure (see below) is
changed, update the PAD field to ensure that the queue element remains exactly
128 bytes. The queue is updated on disk in 4-K pages (32 queue elements). The
checksum should be checked whenever a queue element is used to guard against
data corruption. Note that an easy way to delete a data block is to set it to all
zeros; the correct checksum for an all-zero data block is zero.

CERL TR 99/99 57

struct DataBlock

{

char type; /* A Threshold block

• B Calibration block
• H Fixed length manual block
• M Arbitrary manual block
• E Temperature warning block
• F Voltage warning block

* \0 Empty block
*/

char status; // Status flags from WDT501P

float sum[4]; // 0 – flat, channel 1 1 – flat, channel 2

float peak[4]; // 2 – C weight, channel 1 3 – C weight, channel 2

unsigned long int peakPos[4];
unsigned long int BDAblips;

float cross_sum[2]; // 0 – channel 1

float cross_peak[2]; // 1 – channel 2
unsigned long int cross_peakPos[2];
unsigned long int sample_length; // in tenth-second units

char windy;
signed char temp; // Temperature, from WDT501P

enum Thresholds threshold; // what threshold flag was exceeded

struct time btime; // DOS time block was taken

struct date bdate; // DOS date block was taken

char flag; // Flag a data block as important (warrants a call)

char filter; // Flag that the data block passed the filter

char pad[30]; // Pad to 128 bytes.

unsigned checksum; // 16-bit checksum.

// Start with 0.

// For each 16-bit word in the block,

// add that word in and rotate checksum left 1 bit.

// Checksum value is this number minus 65536,

// such that the checksum of a correctly encoded

// entire block is 0.

};

58 CERL TR 99/99

Configuration Notes

The monitor includes some configuration options that allow the behavior of the
field unit to be changed. These options are preset in the boot image and are in-
tended to allow the controller code to be adapted to different external hardware.

Configuration and data redirection

The first option is the REDIRECT command, which allows for the configuration
or the data queue to be located somewhere other than the initial directory from
which the controller code was started. This facility is used in the FLASH ROM
image to allow configuration defaults to be stored in the ROM (which give the
monitor enough information about its hardware for the base station to contact it
and configure it).

Typing “REDIRECT CONFIG <path>” tells the monitor to read its configuration
from a configuration file stored in the directory indicated by <path> instead.
This request is written in the configuration file from which the monitor last read
its configuration — in other words, if the field unit was redirected from the cur-
rent directory to the new location, the redirection request will be written in the
new location, not the current directory. When the controller code is restarted, it
first reads the configuration files from the current directory, then, if a redirect is
indicated, it reads the configuration file from the designated location. Note that
an indefinite sequence of redirects is permissible. If the redirection points at a
directory in which no configuration files exist, a configuration file will be written
in that directory; the defaults will be taken from the configuration file that
pointed at that directory.

This facility is used in the monitor by storing a redirection to C:\ (the SRAM vir-
tual disk) in the configuration file in ROM. This allows the hardware defaults
(such as the field unit number) to be stored in the FLASH ROM configuration,
while still allowing configuration changes to be made on the fly.

“REDIRECT DATA <path>” directs the field unit to find its data queues in an
indicated directory. Note that there is no chaining for the data queues. If no
data queue exists in the indicated directory, an empty queue will be created.

“REDIRECT LOCK” locks out further redirections. Note that REDIRECT LOCK
is set in the field unit’s FLASH ROM, so these commands do not actually work in
the field unit. (These parameters need not be changed after the field unit is ini-
tially set up, as all the relevant data is stored in the unit’s SRAM virtual disk.)

CERL TR 99/99 59

B&K 4184 mode

There is some support for the B&K 4184 microphone (Bruël & Kjær, Denmark)
in the field unit code. Unlike the Larson-Davis microphones, which have an
electrostatic calibrator, these microphones have an acoustic calibrator. These
acoustic calibrators have two important limitations: they do not have a consis-
tent level (so they are useless for calibration), and they generate noise that can
be picked up by the other microphone on the field unit (so they cannot be used at
the same time). For this reason, a 4184 mode is included that calibrates the two
microphones one at a time, and does not update the internal microphone calibra-
tion coefficients.

SET 4184 ON enables the staggered calibration and disables updating the cali-
bration coefficients from the calibration data.

SET 4184 CAL staggers the calibration. (Note that the settle times allowed for
the staggered calibration mode are shorter, so the total amount of time taken for
the calibration remains roughly constant.)

SET 4184 OFF disables the support for the B&K 4184 microphones. This should
be used for the Larson-Davis microphones on the prototype field unit.

Wind meter setup

To allow the current wind speed to be displayed when the unit is in console
mode, it must be able to convert the wind meter’s output (in pulses per second)
into miles per hour. This is done by a pair of parameters (addend and multipli-
cand) using the following formula:

))((
sec

addendwindspeedmultiplierPulses −⋅=

These parameters can be set using an internal table (WIND.TXT in the FLASH
ROM), which contains mappings from symbolic names of wind meters (such as
W203 for a W203 wind meter, or W203PC for a W203 wind meter with plastic
cups). To set these parameters, type “SET WINDMETER <name>” where
<name> is the symbolic name for the wind meter. To set the addend and multi-
plicand directly, type “SET WINDMETER <multiplicand> <addend>.”

60 CERL TR 99/99

Channel mode

Since the field unit has two microphones, it is sometimes useful to collect data
from only one of them. (Note that the blast-detection algorithm always uses both
microphones.) If one microphone is significantly out of calibration or taking bad
data, it can be ignored. To do this:

SET CHANNEL_MODE CH1 Only take data from the top micro-
phone (Channel 1)

SET CHANNEL_MODE CH2 Only take data from the bottom mi-
crophone (Channel 2)

SET CHANNEL_MODE MEAN Return data from both microphones.

If CHANNEL_MODE is set to MEAN, the field unit returns the geometric mean
of the two microphone peaks and the cross-correlation between the two micro-
phones. If the CHANNEL_MODE is set to CH1 or CH2, the peak and sum-of-
squares values for that microphone are used. Note that setting CHANNEL_
MODE to MEAN will tend to reject wind noise, which is less correlated between
the two microphones than blast noise.

Known errors

A minor programming error prevents the absolute threshold from working prop-
erly in the code stored in the field unit FLASH ROM at Fort Drum. The latest
version of the controller code has this problem corrected. The code is believed to
be Year 2000 compliant, but extensive testing has not been done.

Hardware Details

The external enclosure has been modified internally to accept the new hardware.
Modifications include additional mount points for the card cage on the right and
an electrical box for the heater installed on the left. The modem cage on the top
right was removed and replaced with a strap to hold the Larson-Davis micro-
phone amplifier and power supply. The mounting for the 24-V board and the 24-
V transformer were also moved somewhat to provide additional space for the ISA
card cage.

The main electrical subsystems of the redesigned monitor include:
• AC power conditioning and distribution, including serial and parallel line

protectors, a power switch and an electrical box, a 3-A fuse for the protected

CERL TR 99/99 61

power supplies, a 10-A fuse connected to the heater power supply, and a line
protector for the incoming modem line.

• An ISA card cage, containing all of the processing and communication hard-
ware. (The card cage replaces all of the functionality of the CIM card cage in
the original monitor design, and also includes an internal modem.) The card
cage includes:

• an Industrial Computer Source 486-based CPU card
• an Industrial Computer Source Watchdog Timer / Environmental Moni-

tor board
• Spectrum Signal Processing Dual-TMS32C040 Digital Signal Processor

Board
• Curtis FLASH ROM/SRAM disk emulator card, for program and data

storage
• USR 33.6kbps internal modem for communication.

• ISA power supply unit (also used to provide +5 V and +12 V to other devices)
• A Larson-Davis outdoor microphone system. (The Larson-Davis microphones

have been problematic. It is recommended that a different brand be used in
any future monitors based on our design.) The audio outputs from the mi-
crophones attach to ADCs installed on the DSP board in the card cage. This
microphone system includes:

• two Larson-Davis 2100 Outdoor Microphones
• Larson-Davis Microphone Dual Amplifier/Power Supply
• CERL-made cable harness and mounting boxes
• two CERL-made audio input and control boards, and an audio input as-

sembly.
• A CERL noise monitor 24-V board and transformer assembly. This is identi-

cal to the original Noise Monitor’s 24-V board, except for an added LED to
provide operational feedback.

• Environmental control subsystem: 1000-W, 120-V AC plug-in heater and a
24-V DC fan, both controlled by the 24-V board. These provide a closed-loop
environmental control inside the monitor enclosure.

• Qualimetrics W203 wind meter unit
• Hardware debouncer unit for wind meter input. This board (added to solve

problems found in testing at Fort Drum) prevents slow wind speeds from
crashing the unit by taking the input from the wind meter and generating a
clean square-wave output to send into the watchdog board’s digital input.

62 CERL TR 99/99

Configuring ISA Cards

DSP board

The dual Spectrum C40 DSP board system consists of several components, and
must be ordered as shown:

600-02057 DPC40-40MHz Dual C40 System Board

100-02057 DPC40 Document Kit

202-02058 Cable Kit

600-02058 MDC40S1-50MHz C40 with 384KB SRAM (Quantity 2)

100-02048 MDC40 Document Set

600-02050 AM/D16DS: Dual 16-bit 50KHz Delta Sigma Analog Converters

100-00250 AM/D16DS Document Set

The DSP board must be configured after arrival. The board will arrive pre-
assembled, so it is not necessary to install the modules. However, the jumpers
must be properly configured, and the boot ROM for the DSP microprocessors
must be written.

To do this, the jumpers must first be configured. The configurations for the two
C40 modules are:

Left Module: LK1: 1 = * (A)

LK2: 1 * = (B)

LK3: 1 * *

LK4: 1 =

Right Module: LK1: 1 = *

LK2: 1 * =

LK3: 1 =

CERL TR 99/99 63

LK4: 1 =

Carrier board: LK8: = * LK1: = *

(left to right, this looks like = * = *)

 LK6: =

 =

 * *

 * *

 =

 =

 =

Second, the DSP’s parallel ports must be connected. Connect them by attaching
the included port cables between headers J14 and J7 (primary module port 0 to
secondary module port 3) and J4 to J6 (primary module port 1 to secondary
module port 4).

Third, heatsinks must be installed on the DSP microprocessors by using thermal
glue and a 486-style heatsink with one of the “lips” on the side filed off. The
heatsinks are important to prevent problems in the harsh conditions the monitor
can be subject to.

Last, the boot ROMs on the DSP modules must be programmed. To do this, the
DSP board must be inserted into an ISA bus slot in an IBM PC-compatible ma-
chine. Program by inserting the Monitor PEROM∗ programming disk, and doing
the following:
1. Run the “PEROM” program.
2. Press “C” and hit <return> (to continue)

∗ PEROM = programmable, erasable, read-only memory

64 CERL TR 99/99

3. Press “A” and hit <return> (to program all processors in the network)
4. Choose “A” (the DPC/C40B)
5. Choose “Y” (to make IDROM bootable).

At this point, the PEROM program should say that both modules were “blown
OK” and that programming was completed.

Figure E1 shows the audio input connection on the assembled DSP board. This
connection is closest to the ISA bus edge connector, and carries the analog signal
from the microphone preamp into the ADCs on the DSP board.

PCF-1 Disk Emulator

The PCF-1 Disk Emulator (Industrial Computer Source, city) part numbers are:

PCF1A-0MFSFlash/SRAM Disk Emulator

PCF1-FE11MB Flash EPROM SIMM

PCF1-SR11MB SRAM SIMM

To configure the PCF-1 Disk Emulator board, first install the two single inline
memory modules (SIMMs) and the lithium backup battery. The first slot (the
lowest slot on the board) must contain the FLASH SIMM; the second slot (above
it) contains the SRAM SIMM.

All of the onboard jumpers are left at their factory settings (no jumpers). The
Dual Inline Package (DIP) switches on the back, however, must be set. First set
both the DIP switches on the back of the emulator board to ON (programming
mode.) Then insert the PCF-1 Support Disk, and run the setup program
PCFSETUP.

Use the following responses to PCFSETUP’s prompts:

Floppy or Hard Drive Emulation (F/H)? [F] Type: F

Single or Dual disk emulation (S/D)? [D] Type: D

SIMM Type in socket P1, 1M Flash or 1M SRAM (1F/1S)? [1F} Type: 1F

Boot Disk Size (A=3.5” HD, B=5.25” HD)? [B] Type: A

CERL TR 99/99 65

SIMM Type in sockets P2-P7, ... (1F/2F/1S)? [1F] Type: 1S

Total number of SIMMs in sockets P2-P7 (1-6)? [4] Type: 1

Boot Memory Address (A=CA00, B=CC00, C=CE00, D=D000)? [A] Type: A

DMA channel (0-3)? [1] Type: 1

Base I/O Port Address (B=2B0, C=2C0, D=2D0, E=2E0)? [B] Type: B

This procedure should be acknowledged by the message “done” on the monitor.

Next, the boot FLASH SIMM must be programmed by removing the PCF-1 Sup-
port Disk and inserting the image disk. Then run the program “PCFBCOPY” by:

Switching to the directory “A:\DOS” on the master disk.
Running the program “PCFBCOPY A: F”

PCFBCOPY will automatically erase the FLASH SIMM and write the monitor’s
program from the image disk into the FLASH on the disk emulator board. The
programming computer should then be turned off, and the PCF-1 board removed.
Finally, the PCF-1’s configuration switch SW1-2 must be turned OFF. (SW1-1 is
left ON.) This allows the boot SIMM to replace floppy drive A: when the board is
installed in the field unit. When this is done, the PCF-1 is ready for installation.

Watchdog timer board

The watchdog timer board (with options) is also from Industrial Computer
Source. The part number is:

WDT-501P Watchdog Timer with isolated input and voltage and tem-
perature monitors.

The watchdog timer board is configured by setting a bank of DIP switches to set
the base address. These switches must be set to achieve the base address of
0x2A0 expected by the monitor software. This is done with the following combi-
nation of switch settings:

A9 OFF 1
A8 ON 0
A7 OFF 1
A6 ON 0

66 CERL TR 99/99

A5 OFF 1
A4 ON 0
A3 ON 0

In addition, a jumper must be placed on the IRQ 15 jumper.

Also, a wire must be soldered into a Berg-type shunt connector and connected to
the ~WDRST line (the bottom-most screw lug on the left side of the board).

Internal modem

The modem must be jumpered for COM1, IRQ 4. Any ISA internal modem that
is not “Plug and Play” will work well. The prototype field unit used a USR
Sportster 33.6 kbps modem. Follow the directions in the modem manual to set
the IRQ and COM port for the modem.

CPU board

The CPU board and SIMMs (Industrial Computer Source) part numbers are:

SB4862PVN/66 Single Board Computer: 486DX2/66 CPU, 128 K Cache,
No Video

TMS51236-60 2 MB Fast Page Mode Parity 72-pin SIMMs (two re-
quired)

The CPU board must have two 2 MB or 4 MB SIMMs installed to achieve 4MB
or 8 MB of memory. (The monitor only requires 4 MB, but 2 MB SIMMs are dif-
ficult to find.) The required SIMMs are standard 70 ns, parity, fast-page-mode
72-pin (512Kx36 or 1Mx36) SIMMs. These SIMMs are installed in the slots at
the very left edge of the board.

Video board

Any VGA video card can be used for system setup. No configuration is necessary
for this board.

Assembling the ISA Card Cage

It is best to assemble the ISA card cage “on the bench” before installing it in the
monitor. Quite a bit of configuration must be done on the assembled card cage

CERL TR 99/99 67

before it will work in the monitor itself. The card cage and power supply (Indus-
trial Computer Source) part numbers are:

OEMC06 6 slot OEM ISA Card Cage
OEMC-P25 250 watt AT Power Supply

First, attach the power supply to the card cage. The connectors for the power
supply are installed with the black wires in the center of the two connectors.
The cards should be installed in the card cage in this order (from left to right,
with the ISA bus connectors at the top of the cage):

Slot 1: CPU Board
Slot 2: Watchdog Board
Slot 3: VGA Card
Slot 4: PCF-1 Virtual Disk board
Slot 5: DSP board
Slot 6: Internal Modem

Then, attach a 9-pin serial connector to the cutout in the upper-left corner (by
the CPU board), and attach it to the “Serial Port 2” connector on the CPU board.
(There are two 10-pin serial connectors on the CPU board. Serial Port 2 is the
one farthest from the 25-pin parallel connector.) Attach the Berg shunt from the
watchdog board to pin 1 of the “RESET” connector, and attach a keyboard to the
5-pin keyboard connector. Finally, attach a monitor to the VGA card. Connec-
tions to the ISA backplane are shown in Figure E2. Table E1 lists the pin as-
signments on the connector on the back of the watchdog board.

To configure the CPU board’s Complimentary Metal Oxide Semiconductor
(CMOS) static RAM (SRAM), one needs to enter its internal setup program. To
do this, hit on the keyboard as soon as the BIOS banner displays. The
following settings need to be made in the BIOS:

Under Standard Setup:

• Set day, date, and time.
• Set Floppy A: to 1.44 MB 3.5 in.
• Set Floppy B: to Not Installed Under Advanced Setup:
• Set System Keyboard to Not Present
• Set Wait For “F1” If Any Error to Disabled Under Peripheral Setup:
• Set Serial Port 1 to Disabled
• Set Serial Port 2 to 2F8
• Set Parallel Port to 378

68 CERL TR 99/99

When this is complete, disconnect the keyboard and reboot the card cage. The
noise monitor should start up. DSP startup should indicate no errors, and the
main part of the display should indicate “STARTUP COMPLETE.” It will also
indicate that the data queues are not found and were being rewritten (this is
normal). The last step of setup is to set the unit serial number. To do this, type
the command “SET UNIT <number>” followed by “SET UNIT LOCK” to prevent
the unit number from accidental changes.

At this point, the monitor card cage is fully functional. The last part of assem-
bling the card cage is removing the VGA board. It is important that this board
be removed and the hole in the backplane not be covered so the ISA boards are
properly cooled. It is also recommended that the slot covers for the other cards
have holes drilled in them to allow for some airflow. In addition, a 486-chip fan
was mounted under the card cage by the DSP chips in the prototype unit to pro-
vide additional airflow across the DSPs.

Assembling Custom Components

The CERL Noise Monitoring and Warning System 98 field units use a number of
custom components that must be assembled. These components include:
• two heavily modified audio input printed-circuit boards (PCBs)
• audio input module
• modified 24-V board
• control wiring harness
• microphone input harness
• debouncer circuit
• audio cables
• microphone enclosures
• main electrical box
• heater electrical box.

These devices must be assembled to match the described specifications.

Audio input PCBs

The audio input board for the original field units was designed to support a sin-
gle B&K 4921 microphone (which has an onboard bias power supply) and to pro-
vide a mechanism enabling the field unit’s microphone to be attached to the tele-
phone line. For the redesigned field unit, the same PCB was used for an entirely
different purpose. The PCB was reused only for convenience — many of its

CERL TR 99/99 69

traces were cut or left unused, and several jumper wires were attached. For the
new field unit, the audio input boards served two purposes:
1. To protect the monitor’s internal circuits by providing surge suppression on the

wind and audio signal lines. (A design flaw in the audio input PCBs mounted in
the prototype disables the surge suppression on the wind meter signals. This is
corrected in the latest schematics.)

2. They provide the circuits to take the TTL-level calibrator controls from the card
cage and provide the current loop used to control the calibrator on the Larson-
Davis microphones.

The primary use of the audio input PCBs, however, is to physically accept the
connector used to attach the two microphones and the wind meter. This connec-
tor is a female 12-pin Amphenol round connector. The following pins are used to
attach the Larson-Davis microphone and wind meter to the prototype unit:

A Ground
B Shield Ground
C Audio Signal
D Calibration Control
E Bias Voltage
F Ground
H Wind meter (+)
J +9 volts
K -9 volts
L Wind meter (-)
M Ground
N +12 volts

The audio input boards should be built using internal connections matching the
“Modified Audio Board” design shown in Appendix E. Externally, the audio
boards both have a Molex connector (which brings in the ground, power, and bias
for the outdoor microphone units) and a 1/8-in. headphone-style audio plug.
These plugs connect to the microphone connectors on the front of the Larson-
Davis microphone power supply, connecting the outdoor microphone units. For
future designs, it is recommended that a BNC connector be used for the audio
plug in to cut down on electrical noise in the connection. Both audio boards also
have an external LED connected across the relay power. This LED indicates
when the calibrator for that microphone is turned on.

The audio input board also connects to the field unit’s CPU using a 14-pin ribbon
cable. This ribbon cable connects the wind meter signal lines and the calibrator
control lines to the card cage, as well as the +24-V power supply to drive the

70 CERL TR 99/99

calibrator relay. Because the two audio input PCBs are exactly identical (both
accept the calibration signal on pin 12 of the 14-pin header), a twist in the cable
is used to connect the calibration signal for the second microphone to the correct
pin on the header. The audio input board before the twist should be attached to
the first (top) microphone; the audio input board after the twist should be at-
tached to the second (bottom) microphone. A schematic for the audio input board
is shown as Figure E3.

Modified 24-V board

The monitor uses a 24-V board and power supply almost identical to the 24-V
board used by the old monitors. The only significant difference between the 24-V
board for the existing field units and the new field units is the addition of an
LED after the audio relay driver transistor. Because this line is not used for any
other purpose, this transistor is used to drive a status LED. The LED attached
to the 24-V board indicates the current activity of the unit. If the unit is oper-
ating properly, the LED will blink at a rate of once per second. When the unit is
in data collection mode, the LED will be on for half a second and off for a half a
second. When the unit is in standby mode (with data collection disabled), the
LED blinks on briefly once a second; when the unit’s modem is connected, the
LED blinks off briefly once a second. If the unit is in program upload mode, the
LED blinks at a rate of once every 2 seconds. Figure E4 is a schematic of the 24-
V board indicating the correct location for the extra LED.

Control wiring harness

The two audio input PCBs, the debouncer circuit, the 24-V board, and the card
cage are all connected by a custom wiring harness. This wiring harness is a 14-
wire ribbon cable attached to several different connectors: (1) one male D-shell
connector for the parallel port on the CPU board, (2) another male D-shell con-
nector that was originally attached directly to the watchdog board (the wind me-
ter input) but is now connected to a debouncer circuit instead, (3) two 14-pin
headers for the audio boards, and (4) a 14-pin Berg connector for the 24-V board.
The debouncer D-shell connects lines 10 and 7 from the ribbon cable to pins 20
and 19 respectively. A 470-ohm resistor is placed between line 10 and pin 20 to
prevent excessive current flow from the wind meter into the isolators on the de-
bouncer board. Several other lines that control devices attached to the 24-V
board (the heater, fan, and status LED) as well as the microphone calibrators are
attached to a second D-shell and connected to the parallel port. This ribbon ca-
ble then attaches to the 24-V board and to the two audio input boards.

CERL TR 99/99 71

Since the two audio input boards are identical, lines 8 and 9 are reversed
between the connections for the two boards. This allows the calibrator for the
two microphones to be controlled individually. In the prototype unit, lines 7 and
10 are reversed as well. Since lines 7 and 10 are the wind meter input lines,
their reversal means that the wind meter can only be attached to the first (top)
microphone. However, since the wind meter is attached only to the top
microphone, this is not a problem.

Appendix E includes a wiring diagram showing the exact connections made to
each connector on the ribbon cable. Figure E5 shows the connections between
the wiring harness and the CPU board.

Debouncer circuit

The opto-mechanical wind meters use a photodiode, which is an intrinsically
analog device, to detect the motion of the cups pushed by the wind. However,
this photodiode does not make a sharp transition between on and off (it makes a
smooth and somewhat elongated transition). Therefore, there is a transition pe-
riod when the wind meter will not consistently read as either a 1 or a 0, but in-
stead is seen to switch rapidly between them. This results in interrupts being
triggered more quickly than they can be handled. The end result in testing was
that the MS-DOS running on the field unit’s control processor would become con-
fused and become unable to write to the internal SRAM storage. Not only did
this crash the monitor, but it occasionally resulted in corrupted data queues.
These problems made it necessary to implement a circuit to turn the wind me-
ter’s gradual transitions into sharp digital transitions.

The debounce circuit was designed as a retrofit to solve this problem. The circuit
consists of a Motorola MC14490 hex contact debounce IC, an input optical isola-
tor, and two D-shells (one male, one female). It attaches between the D-shell for
the wind meter output and the watchdog board that contains the wind meter in-
puts. Because the debounce circuit only passes a transition when it has been
stable for approximately 10 Ws, it will prevent the transitions from resulting in
interrupt overloads that may crash the controller CPU. This also means that a
transient being misread as a transition will not result in a spurious count, im-
proving the accuracy of the wind-speed detection. Figure E6 is a wiring diagram
for the debounce circuit.

Microphone subsystem

Externally, the field unit attaches to two microphones and a wind meter. Since
the Larson-Davis outdoor microphones used for the prototype field unit are

72 CERL TR 99/99

designed to screw into a pipe or nipple, the microphones were assembled into a
unit that includes both the microphone and a small, sealed NEMA∗ enclosure
that contains a wiring bay. The two microphone units attach to the 12-pin Am-
phenol connectors at the bottom of the field unit. The wind meter’s signal con-
nection to the field unit is also made via the 12-pin connector for Microphone 1.

The wiring bay inside the microphone enclosures accept the cables connected to
the field unit. In the prototype, two cables were used for Microphone 1: a three-
wire connection (two signal wires and a shield) is used for the wind meter sig-
nals, and a second cable carries the audio signal and the power and bias supply
lines for the microphone preamps. For Microphone 2, only the signal and power
supply wire is connected. The connections from the field unit terminate at a
patch panel inside the enclosure. From this patch panel, they attach to the two
5-pin connectors at the bottom of the microphone. Figure E7 is a wiring diagram
of the required connections between the connector from the microphone assembly
to the field unit.

Field Unit Assembly

Figure 2 is an overall picture of the installed field unit in Spragueville. The total
height of the pole is roughly 12 m. The lower crossarm is roughly 6 m off the
ground and the two crossarms are about 3-m long. The two microphones are
aligned vertically, which is necessary for proper operation of the blast-detection
algorithm. The main enclosure is mounted approximately 3-m off the ground, to
deter vandalism. Power and the telephone line are brought in from a box
mounted lower on the pole (not visible in this picture). Two cables — a 7-
conductor shielded cable for the microphone and a 3-conductor shielded cable for
the wind meter — go from the main unit to the upper microphone. The junction
box under the microphone connects the wind meter data lines to the main unit.
An additional AC cable pair runs from the wind meter into the main unit to pro-
vide power for the heating element in the wind meter (to prevent icing). A sec-
ond 7-conductor cable runs into the second microphone. Both the first pair of
cables (the upper microphone and the wind meter data cables) and the second
microphone cable terminate in 12-pin AMP connectors that mate with the modi-
fied audio PCBs described above.

∗ NEMA = National Electrical Manufacturer’s Association

CERL TR 99/99 73

Figure 2. Installed noise monitoring field unit at Fort Drum, NY.

The Figure 3 view of the upper microphone and wind meter shows the cabling
running between the main box, the junction box under the microphone, and the
wind meter.

Figure 3. Closeup view of microphone and wind meter setup at Fort Drum, NY.

74 CERL TR 99/99

Figure 4 shows the inside of the main part of the field unit. This is a modified
version of the original CERL field unit case. A full list of parts for the CERL
Noise Monitoring and Warning System 98 is shown in Table 5 at the end of this
chapter. The enclosure shown in Figure 4 has an air intake on the bottom left
side, which opens into the duct on the left. Mounted in front of this duct is the
power junction box (including the master power switch mounted on the top of the
junction box) and the 120 VAC switched electrical outlet for the heater (the white
box on the left). The heater is a standard, 1000-W, 120 VAC space heater. (Fu-
ture designs may use alternate heaters because this heater is overly powerful
and would be dangerous if it somehow became “stuck on.”) On the top of the
case, the mounting for the Hayes 300 bps modem has been removed and replaced
with the Larsen-Davis microphone controller and preamp. This box provides a
gain stage for the two microphones, along with the required bias voltages. (It
also provides A- and C-weight filters, which should not be used.) The amplified
and unfiltered output from the microphones is then sent to the DSP board via a
BNC to 15-pin D-shell cable.

Visible by the end of the duct is a small board wrapped in black tape. This is the
wind meter debounce circuit, which corrects the only real problem with the
original design — that the wind meter’s signal transitions were not sharp
enough to ensure that only one edge was sensed when it changed state. The de-
bouncer is based on a hex contact debounce IC and optoisolators and allows
sharp transitions to be sent to the inputs. This prevents the crashes that oc-
curred if a large burst of interrupts caused the stack to be overrun. This circuit
connects to the 25-pin D shell that plugs into the watchdog board. It also con-
nects to the watchdog board. The watchdog board conveniently provides a 56
kHz clock that was ideal for the debouncer IC.

Mounted to the right of the microphone preamplifier are a 120 VAC to 28 VAC
transformer and a CERL 24-V board. The 24-V board is nearly unmodified (in
fact, a completely unmodified 24-V board may be used in a pinch). The only
change is that an LED, used to indicate that the field unit is working, is
mounted on the board. (It is attached to the drive transistor for the modem-
power relay, which is unused in this design.) This LED blinks at 1 Hz when the
unit is operating. A shortened duty cycle indicates that data collection is dis-
abled, and a lengthened duty cycle indicates that the modem is connected.

CERL TR 99/99 75

Figure 4. Internal view of the CERL Noise Monitoring and Warning
System field unit case.

At the center of the case is the power supply, which is an ordinary computer
power supply that provides +12 V, +5 V, -5 V, and –12 V DC to the rest of the sys-
tem. The power switch should always be left ON (power can be cut off with the
switch on the junction box, which also turns off the 24-V power supply and the
rest of the live AC in the system). The 24-V board is connected into the control
signal harness that terminates with the 25-pin D shell visible above the power
supply and another shell attached to the leftmost board in the card cage.

Below the power supply is the box containing both audio interface boards, as well
as the telephone line surge suppresser. The connections from the audio box are
brought-out Molex connectors (used for the bias voltage and power lines) and
eighth-inch signal connectors. (It probably would have been better to bring the

76 CERL TR 99/99

audio signal out on coaxial connectors because the noise floor of this field unit is
higher than it should be.) The audio interface board is also connected to the con-
trol wiring harness.

On the right side of the box is the main card cage. Under the cage is the main
exhaust fan and two AC line filters. The first AC line filter is the series filter,
which is the box labeled “HIGH VOLTAGE.” To the left and above this box is the
second (parallel) filter, which is the surge suppresser in the gray plastic case
with the cord wrapped around it. The cord is for the keyboard and is used for
maintenance — a conventional AT-style, 5-pin keyboard can be plugged into it.

From left to right, the cards in the card cage are:
• CPU board
• Watchdog timer (WDT-501P) board
• Empty slot for a VGA board (leave empty when not in use to improve airflow)
• PCF-1 virtual disk SRAM/FLASH ROM board
• Dual DSP board
• 33.6 kbps USR modem.

These boards are all mounted in a passive ISA backplane, and connect to the rest
of the field unit with the following connections:
• CPU board:

• parallel port connects to the control wiring harness (“port 1”)
• one serial port connects to the console serial plug on the left side of the

cage
• Watchdog: DB25 connects to the debouncer circuit board
• DSP: The front D shell (which connects to the A/D and D/A board mounted

on the DSP) connects to the two microphone outputs on the Larson-Davis
preamp.

• Modem: The telephone line connects through the phone surge suppressor
mounted on the bottom of the field unit’s case.

CERL TR 99/99 77

Table 6. Parts manifest and sources.

Part Number Description Source

SB4862PVN/66 i486/66 Single Board Computer Industrial Computer Source

OEMC-06 6-slot ISA card cage Industrial Computer Source

OEMC-P15 150-W A/C computer power supply Industrial Computer Source

FD-1.4M 3.5 inch 1.4mb floppy disk drive Industrial Computer Source

WDT-501P Watchdog Timer Board Industrial Computer Source

PCF1-0MFS PCF-1 SRAM/FLASH Disk Emulator
Board

Industrial Computer Source

PCF1-FE1 1 MB FLASH EPROM SIMM Industrial Computer Source

PCF1-SR1 1 MB SRAM SIMM Industrial Computer Source

USR-000840-00 33.6 kbps USR Sportster Internal Mo-
dem

Computer Discount Warehouse

DPC/C40B Dual DSP carrier board Spectrum Signal Processing

2 x TMS-32C040 40MHz/384K module Spectrum Signal Processing

AM/D16DS Crystal ADC/DAC Daughter
Module

Spectrum Signal Processing

DPC/C40B DSP port cables Spectrum Signal Processing

2200C Microphone Preamp/Power Supply Larson-Davis

Microphone Bases and Cabling CERL

5830-00-R10-3677 2 x Outdoor Microphone Larson-Davis

Cable A Audio Cables (BNC-26 pin D shell) CERL

19435F Fan EG&G Rotron

Heater Ace Hardware

84-01-602 Modified 24-V board (with added LED) CERL

P-8664 120 VAC-28 VAC transformer Stancor

DLP-10-200V50 Telephone Line Protector MCG Electronics

J9200-10 Parallel Surge Protector Square D Company

I-102 Parallel Power Isolator Control Concepts

84-01-703 2 x Audio Input Boards CERL

Cable B Audio Input Harness CERL

Cable C 24-V Cable Harness CERL

Wind meter Debounce Circuit CERL

A-30H240855LP Noise Monitor Enclosure (modified) CERL (Hoffman modified)

276-452L 120-V electrical box Bell Electrical

Maintenance Parts

SVGA2 SVGA video adapter (generic) Industrial Computer Source

FD-1.4M 1.44 mb floppy disk drive (generic) Industrial Computer Source

KB2 101-key keyboard (generic) Industrial Computer Source

78 CERL TR 99/99

6 Conclusions and Recommendation

The CERL Noise Monitoring and Warning System 98 appears to enhance the
signal-to-noise ratio by about 10 dB. In effect, it can measure blast sounds relia-
bly at a level 10 dB lower than could the original CERL noise monitor. Chapter
5 on implementation shows that the monitor is technically feasible. It is recom-
mended that the new Noise Monitoring and Warning System 98 be transferred to
the field via a suitable DEM-VAL program such as ESTCP.

CERL TR 99/99 79

References

Benson, Jonathan W., “A real-time blast noise detection and wind noise rejection system,” Noise
Control Engineering Journal, 44 (6), Nov-Dec 1996.

Texas Instrument TMS320C4x User’s Guide 2, SPRU063C (Dallas, Texas).

80 CERL TR 99/99

Appendix A: Console Commands

This list of commands can be issued to the CERL Noise Monitoring and Warning
System 98, in console mode. All of this information is available online. Use
“SHOW COMMANDS” to show the list of available commands, and “HELP
<command>” to show the definition and usage of a particular command.

QUIT

Syntax: ?QUIT
QUIT shuts down the Noise Monitor control program. Under normal circumstances,
it will restart automatically.

KERMIT

Syntax: ?KERMIT [MODEM|CONSOLE]
KERMIT shuts down the noise monitor and runs a KERMIT server on the
underlying hardware. This allows maintenance and updates to the
noise monitor’s control software from over a serial port or through
the modem. The noise monitor will normally restart automatically
when the modem hung up or the serial cable is unplugged.

KERMIT MODEM sets up KERMIT to communicate to the system’s modem.
KERMIT CONSOLE sets up KERMIT to communicate via the console serial

port.

HELP

Syntax: ?HELP [COMMAND]
HELP, used alone, provides a general summary of the help options
available for the Noise Monitoring and Warning System.
To find help on a particular command, use “HELP <command>”.

START

Syntax: ?START [AT <time>] [FOR <length>] [CAL]
START is used to take a manually collected data block.
To start an indefinite-length data block immediately, simply
type “START”. STOP will end the data block and record it.
To take a data block of a fixed length, use “START FOR <length>.”
The data block will be ended automatically when the time is up.

CERL TR 99/99 81

To take a future data block, specify AT <hh:mm:ss> [<mm/dd/yyyy>];
the day is assumed to be today if not specified. To cancel a
future data block, use “START CANCEL”.
Add “CAL” to the end of any START command to request that the
calibrators be enabled during the sample.

STOP

Syntax: ?STOP
STOP cancels any manual data blocks currently in progress.
Any manual data block in progress will be immediately terminated,
and the SEL and PEAK values will be recorded from the start
up until that point.

STATUS

Syntax: STATUS [ON|OFF]
The STATUS command displays the information that would normally
be displayed on the status line at the top of the screen in an
expanded format. “STATUS ON” enables this status line on remote
consoles, “STATUS OFF” disables it for slow links.
 Flags Wind Speed o

LCSEL 36.9 LFPK 51.0 | PK 50.9 | | 1 | 0 MPH | 97.9 PS OK

CSEL of last block taken Peak of last tenth-second sample Internal

Status

 Flat peak of last block taken Number of blocks in queue

Flags are: C - Calibration block in progress M - Manual block in progress

T - Threshold block in progress
B - Blast Detected W - Windy conditions
O - Online to a base station
S - Standby mode

A + after the number of blocks indicates that one or more blocks in the
queue are “important,” and that the Base Station will be called when
possible.

82 CERL TR 99/99

CAL

Syntax: ?CAL [CH1|CH2|BOTH|IMM|IMM1|IMM2|IMMB]
CAL starts a calibration.
CAL starts a calibration of whatever microphones are currently being
used to collected data. CAL CH1, CAL CH2, and CAL BOTH start a normal
calibration of the specified microphones.
CAL IMM immediately takes a calibration block from the active microphones,
without turning on the calibrators or waiting for them to stabilize.
Normally this should not be done. IMM1, IMM2, and IMMB calibrate
the first, second, or both microphones.

SET

Syntax: ?SET <variable> [<parameters>]
SET <variable>, without further parameters, displays the value of a variable.
SET <variable> <parameters> sets the value of a given configuration variable.
SHOW OPTIONS lists the known variables for the SET command;
HELP SET <variable> gives the possible settings and more information
about the variable.

SHOW

Syntax: ?SHOW [BLOCK
[n]|THRESH|FILTER|OPTIONS|COMMANDS|<option name>]

SHOW COMMANDS lists the available commands.
SHOW OPTIONS lists the available configuration variables.
SHOW <variable names> shows the current value of a variable.
SHOW BLOCK shows the last data block taken.
SHOW BLOCK <n> shows the nth-oldest data block in the queue.
SHOW THRESH shows settings that control when blocks are taken.
SHOW FILTER shows settings that control which blocks are rejected or
considered to be important.

ENABLE

Syntax: ?ENABLE
ENABLE turns off the flag that disables threshold data collections during
the microphone warm-up period and microphone calibration. Normally, this
command need not be used except for testing. (Note that it does not enable
or disable threshold mode; use SET THRESH_MODE to do that.)

CERL TR 99/99 83

DUMP

Syntax: ?DUMP [ALL]
DUMP discards the oldest data block in the queue.
DUMP ALL discards all of the data blocks in the queue.
Use these commands only if you are certain that no valid data is stored
in the noise monitor’s data queue.
DUMP CONFIG resets the configuration of the noise monitor to the
defaults contained in the FLASH ROM in the field unit.

HANGUP

Syntax: ?HANGUP
HANGUP forces the noise monitor to immediately disconnect any
incoming call on the modem. It can be used to hang up an incoming
console session.

CALL

Syntax: ?CALL
CALL forces the noise monitor to call its programmed base station
number at the next available opportunity.

REDIRECT

Syntax: ?REDIRECT CONFIG|DATA <path>

?REDIRECT LOCK
REDIRECT CONFIG <path> tells the noise monitor to read in its configuration
files from the specified path instead of the current directory. (The
redirect is stored in a configuration file in the current directory.) Normally,
the configuration will be redirected from the ROM disk into the RAM disk.
REDIRECT DATA <path> tells the monitor to read its data files from the
specified path instead of the current directory.
REDIRECT LOCK tells the monitor to not allow further redirection.
Neither of these redirections takes place until the system is restarted.
If no configuration files are found in the specified path, they will be
created based on the defaults stored in the current configuration files.

84 CERL TR 99/99

DIE!!

Syntax: ?DIE!!
DIE!! tests the watchdog timer by doing a 3-second delay in the
program code. The monitor should restart automatically when this
command is issued; if it does not, the failure of the watchdog timer
will be reported and the monitor will be restarted.

VERSION

Syntax: ?VERSION
Displays noise monitor version information and the time since the last reboot.

SEND

Syntax: ?SEND <string>
Sends a literal string to the modem.
Note: Due to the internal architecture of the code, the string will
be converted to upper case first. This will not normally be a problem.

CERL TR 99/99 85

Appendix B: Monitor Options

This is a list of user-settable options that control the noise monitor operation.
All of these parameters can be set online; use “SET <option> <value>.” “SHOW
<option>” shows the current value of an option. Like the information for com-
mands, all of this information can be viewed online. Use “SHOW OPTIONS” for
a list of available options, and “HELP SET <option>” for more information on a
given option.

THRESH_MODE

Syntax: ?SET THRESH_MODE ON|OFF
THRESH_MODE enables or disables threshold data collection.

FPK_THRESH

Syntax: ?SET FPK_THRESH <dB>|OFF
FPK_THRESH sets the threshold on the flat-weighted peak over
which a threshold data block will be started. The value is
given in calibrated decibels. Normally, this value will not be set.
(Use “OFF” to disable the threshold.)

CPK_THRESH

Syntax: ?SET CPK_THRESH <dB>|OFF
CPK_THRESH sets the threshold on the C-weighted peak over
which a threshold data block will be started. The value is
given in calibrated decibels. Normally, this value will not be set.
(Use “OFF” to disable the threshold.)

FSEL_THRESH

Syntax: ?SET CPK_THRESH <dB>|OFF
FSEL_THRESH sets the threshold on the flat-weighted SEL for a tenth-
second block over which a threshold data block will be started. The value
is given in calibrated decibels. Normally, this value will not be set.
(Use “OFF” to disable the threshold.)

86 CERL TR 99/99

CSEL_THRESH

Syntax: ?SET CSEL_THRESH <dB>|OFF
CSEL_THRESH sets the threshold on the C-weighted SEL for a tenth-
second block over which a threshold data block will be started. The value
is given in calibrated decibels. Normally, this value will not be set.
(Use “OFF” to disable the threshold.)

BLAST_THRESH

Syntax: ?SET BLAST_THRESH <number>|OFF
BLAST_THRESH sets the minimum number of blast-detection blips that
must be detected in a tenth-second block to trigger a threshold block.
The higher the number, the more likely it is to ignore a windy block,
but it also increases likelihood of missing a quiet blast.
SET BLAST_THRESH OFF to disable.

ABS_THRESH

Syntax: ?SET ABS_THRESH <number>|OFF [dB|dB ABS]
ABS_THRESH is the threshold used by the base stations. It is normally
set in terms of a number from 33000-65535 that represents a flat peak
level coming in from the microphone sampler; however, it can also be set
in terms of calibrated or absolute decibels. (Use “SET ABS_THRESH <number>”
to set it normally; use “SET ABS_THRESH <number> dB” to set it in decibels, or
“SET ABS_THRESH OFF” to disable the absolute threshold. “SET ABS_THRESH
<number> dB ABS” sets the absolute threshold in terms of uncalibrated
peaks.)

FPK_FILTER

Syntax: ?SET FPK_FILTER <dB>|OFF
If set, the FPK_FILTER is the minimum peak level for a block that will
not be subjected to the KEEP_FILTER flag. Normally, this will be set
above the threshold and used to prevent calls from being made to the
base station for minor noises.

CPK_FILTER

Syntax: ?SET CPK_FILTER <dB>|OFF
If set, the CPK_FILTER is the minimum C-weighted peak level for a block
that will not be subjected to the KEEP_FILTER flag. Normally, this will
be set above the threshold and used to prevent calls from being made to
the base station for minor noises.

CERL TR 99/99 87

FSEL_FILTER

Syntax: ?SET FSEL_FILTER <dB>|OFF
If set, the FSEL_FILTER is the minimum SEL for a block that will not
be subjected to the KEEP_FILTER flag. Normally, this will be set above
the threshold and used to prevent calls from being made to the base
station for minor noises.

CSEL_FILTER

Syntax: ?SET CSEL_FILTER <dB>|OFF
If set, the CSEL_FILTER is the minimum C-weight SEL level for a block
that will not be subjected to the KEEP_FILTER flag. Normally, this will
be set above the threshold and used to prevent calls from being made to
the base station for minor noises.

LENGTH_FILTER

Syntax: ?SET LENGTH_FILTER OFF|<maximum length> [minimum length]
LENGTH_FILTER allows the KEEP_FILTER flag to be applied to samples
that exceed a given maximum length or are shorter than a given
minimum length. (Lengths are given in seconds.)

KEEP_FILTER

Syntax: ?SET KEEP_FILTER [ON|OFF|CALL]
This flag controls the disposition of blocks that do not fall within
the bounds of the Noise Monitor filters. (Use SHOW FILTER for a list
of these filters.)
If KEEP_FILTER is ON, then these blocks will be kept.
If KEEP_FILTER is OFF, then they will be discarded.
If KEEP_FILTER is CALL, then data blocks that do not pass the filter
will still be considered important and will trigger calls to the base station.
If KEEP_FILTER is BLAST, then data blocks that do not pass the filter
will be kept if they are identified as blasts by the blast detection
algorithm. They will not be considered important.
If KEEP_FILTER is CALL-BLAST, then data blocks that are identified as
blasts will be kept and considered important regardless of their having
passed the filter. Otherwise, they will be discarded.

CAL_CONST

Syntax: ?SET CAL_CONST CH1|CH2 <value>
CAL_CONST is the adjustment from decibel levels reported by the DSP board
to actual acoustic decibels. Normally, it is adjusted automatically as part
of the calibration process. To set it explictly, use “SET CAL_CONST
CH1 -56” to set the Channel 1 calibration constant to -56 dB.

88 CERL TR 99/99

CAL_LVL

Syntax: ?SET CAL_LVL CH1|CH2 <value>
CAL_LVL sets the calibrator level, which is the acoustic sound level
(in decibels) that an active calibrator corresponds to. Piston phone calibrators
are usually 124 dB; the internal calibrators on microphones are usually
around 90 dB. To set CH1 to assume a piston phone calibrator, use
“SET CAL_LVL CH1 124.”

CALIBRATOR

Syntax: ?SET CALIBRATOR [CH1|CH2] ON|OFF
SET CALIBRATOR turns the microphone calibrators on and off, and enables
or disables threshold sampling appropriately. To turn the CH1 calibrator
on, type “SET CALIBRATOR CH1 ON”; to turn both off, type “SET CALIBRATOR

OFF.”

4184

Syntax: ?SET 4184 ON|CAL|OFF
4184 controls a special mode for the B&K 4184 microphone, which uses
acoustic calibrators instead of electrostatic ones and needs special
treatment. Normally, these calibrators are not used for calibration,
but instead are used as a self-check to make sure that the microphones are
functioning properly. In addition, the calibrations need to be
staggered, because they can interfere with each other.
“SET 4184 ON” enables the staggered calibration and disables setting calibration
constants from the calibration blocks.
“SET 4184 CAL” enables staggered calibration, but sets calibration constants.
“SET 4184 OFF” disables the 4184-specific modes, for electrostatic calibrators.

USE_CAL

Syntax: ?SET USE_CAL ON|OFF
Disabling USE_CAL displays uncalibrated values for the peak and SEL values
on the status line. Enabling it shows calibrated values for peak and SEL.

PRETRIG

Syntax: ?SET PRETRIG <seconds>
PRETRIG is the number of seconds that are read into the threshold
block when the threshold is exceeded, in tenth-second blocks.
Up to 4 seconds can be included before the actual block that
exceeded the threshold.
“SET PRETRIG 0.5” sets the pretrigger time to 0.5 sec.

CERL TR 99/99 89

POSTTRIG

Syntax: ?SET POSTTRIG <seconds>
POSTRIG is the number of seconds that are read into the threshold
block when the threshold is exceeded, in tenth-second blocks.

VERBOSE

Syntax: ?SET VERBOSE [ON|OFF]
VERBOSE controls how much information is displayed when a block is
taken. “SET VERBOSE OFF” displays a single line with the length of
each block as it is taken; “SET VERBOSE ON” displays the peak and
SEL data for each block as well.

MODEM_PORT

Syntax: ?SET MODEM_PORT 1|2
MODEM_PORT controls which COM port (1 or 2) the noise monitor expects to
find the modem on. This will not normally need to be changed.

MODEM_SPEED

Syntax: ?SET MODEM_SPEED [VAR|PAC] <speed>
This sets the speed at which the noise monitor talks to the modem. If “VAR”
is specified, the rate given is the maximum rate that will be used; the
port speed will be reduced based on the CONNECT message. (This is needed
for compatibility with the base station.) If “PAC” is specified, pacing
will be enabled, and data will be sent to the modem at a rate no greater
than the actual connect speed.
Valid modem speeds are: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600

CONSOLE_PORT

Syntax: ?SET CONSOLE_PORT <port>
Sets the port number for the serial console (1 or 2).
This will not normally need to be changed.

CONSOLE_SPEED

Syntax: ?SET CONSOLE_SPEED <speed>
Sets the port speed for the serial console.
This will not normally need to be changed.
Valid speeds are: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600

90 CERL TR 99/99

PORT_LOCK

Syntax: ?SET PORT_LOCK ON
This locks all of the port settings, including MODEM_PORT, MODEM_SPEED,
CONSOLE_PORT, CONSOLE_SPEED, and INIT. Once they have been locked, they
cannot be unlocked and cannot be changed.

PHONE

Syntax: ?SET PHONE [ON <phone number>|OFF]
SET PHONE ON <phone number> sets the telephone number to be dialed when the
noise monitor collects a data block that is considered “important.”
(Use ‘T’ in the telephone number to switch to tone dialing, and ‘P’ to switch
to pulse. Tone dialing is the default.)
SET PHONE OFF tells the monitor NOT to call into a base station when
a data block is collected.

CALL_THRESH

Syntax: ?SET CALL_THRESH <number>
CALL_THRESH sets the number of items that can be stored in the data queue
before the base station places a call. As long as this number is not
exceeded, no call will be placed until an “important” data block istaken.

MODEM_INIT

Syntax: ?SET MODEM_INIT [ON <init string>|OFF]
Normally, the modem init string would never be disabled.
“SET MODEM_INIT ON ATZ” tells the modem to reset to its default configuration

on startup.
“SET MODEM_INIT OFF” disables modem initialization, which is a bad idea
because the modem cannot adjust its baud rate to match that of the computer.

UNIT

Syntax: ?SET UNIT <number>
SET UNIT <number> sets the noise monitor’s serial number as seen by the base sta-
tion. Valid range is 0-63. “SET UNIT LOCK” locks the unit number against future
changes.

CHANNEL_MODE

Syntax: ?SET CHANNEL_MODE CH1|CH2|MEAN
CHANNEL_MODE controls which microphones’ data are used in the
SEL and PEAK data sent to the noise monitor. Normally, a geometric
mean of the two channels is sent; however, if one microphone is
less reliable than the other, the data sent to the monitor can
be set to come from either one.

CERL TR 99/99 91

CAL_INTERVAL

Syntax: ?SET CAL_INTERVAL <hours>
This option sets the number of hours between automatic calibrations.
An autocal interval of 0 disables automatic calibrations.
Note that automatic calibrations will always occur on startup.

SAMPLE_TIMEOUT

Syntax: ?SET SAMPLE_TIMEOUT [OFF|<secs>]
This option sets the maximum length of a threshold-mode data sample.
The sample will be cut off at the timeout; if the threshold is exceeded
again, a new sample will be started.

KEEP_WINDY

Syntax: ?SET KEEP_WINDY CALL|ON|OFF
If KEEP_WINDY is ON, then windy blocks will be kept.
If KEEP_WINDY is OFF, then windy data blocks will be discarded.
If KEEP_WINDY is CALL, then windy data blocks will still be considered
important, and will trigger calls to the base station.
If KEEP_WINDY is BLAST, then data blocks that are marked as windy will
be kept only if they are identified as blasts by the blast detection
algorithm. They will not be considered important.
If KEEP_WINDY is CALL-BLAST, then data blocks that are identified as
blasts will be kept and considered important regardless of the windy flag.
Otherwise, they will be discarded.

KEEP_BAD

Syntax: ?SET KEEP_BAD CALL|ON|OFF
If KEEP_BAD is ON, then data blocks not identified as having blasts
will be considered unimportant (a call will not be made when one is
collected), but it will be stored in the queue and sent when the
unit connects to a base station.
If KEEP_BAD is OFF, then data blocks not identified as having blasts
will be discarded.
If KEEP_BAD is CALL, then data blocks not identified as having blasts
will still be considered to be important, and a call will be placed to warn
the base station of them.

WIND_SAMPLE

Syntax: ?SET WIND_SAMPLE <seconds>
WIND_SAMPLE controls how long the wind meter accumulates ticks before
it reports the speed back to the monitor. It must be less than the
WIND_TIMEOUT for the WINDY flag to be meaningful.

92 CERL TR 99/99

WIND_THRESHOLD

Syntax: ?SET WIND_THRESHOLD <ticks>
WIND_THRESHOLD sets the number of pulses that must be received
from the wind meter in the sample time in order to set the WINDY
flag. Normally, you would set this in terms of miles per hour; use WIND_MPH
instead.

WIND_TIMEOUT

Syntax: ?SET WIND_TIMEOUT <seconds>
WIND_TIMEOUT controls how long the data collected is considered WINDY
after a block in which the number of ticks read exceeds the threshold.
Normally, this timeout period will be longer than the WIND_SAMPLE period.

WIND_MPH

Syntax: ?SET WIND_MPH <MPH>
WIND_MPH sets the WIND_THRESHOLD to the correct number of pulses
to match up with the miles per hour specified, based on the current wind meter
type and the wind sample interval.

WINDMETER

Syntax: ?SET WINDMETER <windmeter type>|<mult add>
SET WINDMETER <windmeter type> reads the WIND.TXT file for the given
Wind meter type, and sets the Multiplier and Add parameters appropriately.
SET WINDMETER <multiplier> <add> sets a custom wind meter type, with the
given Add and Multiply parameters.

TIME

Syntax: ?SET TIME <hh:mm:ss>
SET TIME <hh:mm:ss> sets the noise monitor time to the given time.

DATE

Syntax: ?SET DATE <dd/mm/yyyy>
SET DATE <dd/mm/yyyy> sets the noise monitor date to the given date.

CALL_THRESH:

Syntax: ?SET CALL_THRESH <number>
This sets the unit to call out to the base station to empty its queue when at
least <number> events are in the queue. (This ensures that the queue
does not overfill and lose events or tie up the phone for hours when an
important block finally does arrive. At 300 bps, emptying the 2047-element
data queue can take a while.)

CERL TR 99/99 93

REBOOTS

Syntax: ?SET REBOOTS [RESET]
SET REBOOTS or SHOW REBOOTS shows the number of times the system has
been booted since the counter was last cleared.
SET REBOOTS RESET clears the boot counter.

HEATER

Syntax: ?SET HEATER [ON|OFF]
SET HEATER ON enables the heater inside the case of the noise monitor,
and SET HEATER OFF turns it off.
(Note that, if the internal temperature is above 20 °C, it will
be immediately turned off again by the internal control program. Likewise,
if the internal temperature is below 12 °C, the heater will
immediately be turned on.)

FAN

Syntax: ?SET FAN [ON|OFF]
SET FAN ON enables the fan to bring air from the outside into the case of
the noise monitor, and SET FAN OFF turns it off.
(Note that, if the internal temperature is below 20 °C, it will be immediately
turned off again by the internal control program. Likewise, if the internal
temperature is above 30 °C, the fan will immediately be turned on.)

94 CERL TR 99/99

Appendix C: Field Unit Software Source
Code

Controller Source Code

The controller source code is written for MS-DOS, using the Borland C++ 3.1
compiler. Although it is written using C++ extensions, the vast majority of the
code is procedural C code. The only C++ extension used extensively is the “//”
style comments. However, the DSP code (DSP.CPP) is written using classes be-
cause of the code inherited from the previous developer. Although there are a
few classes, they do not really represent objects. It was simply most convenient
for the developer to leave the existing structure of this code unchanged when
work began on it. Unfortunately, this resulted in the DSP.CPP module being by
far the most cryptic part of the control code.

This appendix contains the source code to the field unit’s control program. Each
core file is preceded by annotations listing the functions contained in that source
file, and other information useful in understanding what that module does and
how it relates to the other modules and the program as a whole.

CMD.CPP and CMD.H

CMD.CPP and CMD.H make up the field unit’s command handler. In the header
file is a list of text and symbolic names for every command and option (“SET”)
known to the field unit. The symbolic command names are declared in the
COMMANDS enumerated type (“enum COMMANDS”); the text names are
stored in the command_strings array (char *command_strings[]). Likewise, the
symbolic option names are declared in the OPTIONS enumerated type (enum
OPTIONS), and the text names are stored in the option_strings array (char
*option_strings). It is important that the corresponding lists have the same
number of elements, and that each element in the two lists match up. If the
symbolic names and text names do not match up, the commands will be parsed
incorrectly. The string arrays are terminated with a null pointer. If new com-
mands are to be added, add them to the ends of the list before the “END” tag and
the null pointer.

CERL TR 99/99 95

CMD.CPP contains the following functions:

char *parse_cmd(char *cmd, enum COMMANDS *command)
parse_cmd identifies the command input as the first word pointed
to by cmd, and returns the command index in *command. It also
returns the parameters (second and later words) as the return
value. If the command is invalid, it returns CMD_INVALID (-1) in
*command.

char *parse_set(char *cmd, enum OPTIONS *option)
parse_set is similar to parse_cmd, but works for options. The op-
tion is presumed to be the first word pointed to by cmd, and the re-
turned parameters are the second and later words. If the option is
invalid, it returns OPT_INVALID (-1) in *command; otherwise, it
returns the option index in *command.

void do_command(char *cmd)
do_command accepts a command from the console in *cmd, and
executes the command. This function contains all of the code nec-
essary to act on the commands. It uses parse_cmd to identify the
command being issued and then uses a switch statement to exe-
cute the correct instruction code.

void do_set(char *cmd)
do_set is called by do_command to act on a “SET” command. It is
passed in the parameters to the SET command, then uses
parse_set to identify the option, and then acts on it using a large
switch statement.

int init_help(char *path)
init_help initializes the help system by scanning the help files and
finding the locations of the help for all of the commands and op-
tions in that file.

void printHelp(enum COMMANDS command, char *params)
printHelp displays the help for the command identified by “com-
mand.” If command is CMD_SET, it uses the “params” string to
identify which option value to print the help for. (If
CMD_INVALID is passed in, the generic help will be provided.
Also, if command is CMD_SET and params is non-empty but does
not contain a valid option name, the generic option help will be
provided.)

96 CERL TR 99/99

The help system reads two files, CMD_HELP.HLP and OPT_HELP.HLP, stored
with the program code on the FLASH ROM. (The init_help command is called
with an empty path, which will simply access the current directory. This is “A:\”
on the monitor.) CMD_HELP.HLP stores the help information for commands.
Information from it is displayed when the user types “HELP <command>”
OPT_HELP.HLP stores the help information for settings. Information from it is
displayed when the user types “HELP SET <option>”.

These files start with generic help, which is displayed when no specific help is
available or the input is not a valid command or setting, and are followed by spe-
cific help on various settings. These specific help sections are preceded by lines
of the form:

>setting or option name

where “setting or option name” is the name given in the command_strings or op-
tion_strings array. A line of the form:

>*END

must be the last line of the file.

DATACONV.CPP and DATACONV.H

This module provides conversions to and from the ASCII data formats used by
the existing field units, and is used for compatibility with the existing base sta-
tions. The formats that this converts to and from are defined by the field unit
protocol specification. This means writing each four bits as an ASCII value be-
tween 0x20 and 0x2F, least significant bit (LSB) first (little endian), except
where noted. It defines the following functions:

Note that all of the conversions to ASCII format return 1 for success and 0 for
failure. (Many of them always return 1 and cannot fail.)

int conv_byte2ascii (unsigned char byte, char *string)
Converts 1 byte (an 8-bit unsigned number) into the 2-character
string used by the original CERL field units.

int conv_int2ascii(unsigned int word, char *string)
Converts one word (a 16-bit unsigned number) into the 4-character
string used by the original CERL field units.

CERL TR 99/99 97

int conv_date2ascii(struct date *datep, char *string)
Converts a date (stored in the datep structure) into the 4-byte
ASCII date form used by the original CERL field unit. This is
done by first converting the date to an integer using
conv_date2int() then converting the integer to a string using
conv_int2ascii. This function is Y2K compliant.

int conv_time2ascii(struct time *timep, char *string)
Converts a time (stored in the timep structure) into the 6-byte
ASCII form used by the original CERL field unit.

int conv_peak2ascii(float peak, char *string)
Converts a peak level, as returned by the DSP code (which is really
65536 times the peak level returned by the DACs), into the ASCII
format used by the original monitor. The peak is converted to an
unsigned integer by dividing by 65536 and finding the absolute
value, then converting that integer to a 2-character ASCII string.

int conv_sel2ascii(float sel, char *string)
This converts the Sound Exposure Level stored in SEL to the 16-
byte character string (storing an 8-byte integer) used by the origi-
nal monitors. This is done by first dividing out 2^32 (65536^2),
then converting the floating point number into an integer by re-
peatedly taking out the first 4 bits.

int conv_len2ascii(unsigned long len, char *string)
This converts from the number of tenth-second blocks taken into
the number of 50-ms blocks taken, then sends the resulting num-
ber as a 12-byte string.

int conv_pp2ascii(unsigned long pp, char *string)
This converts from the peak position stored by the monitor (which
is in terms of 0.5 ms “microblocks”) into the peak position used by
the old monitor (which is in terms of its sample rate of 20 kHz),
then returns the resulting number as an 8-byte ASCII string.

int conv_byte2bcd(unsigned char byte, char *string)
Converts a number between zero and 99 into the binary-coded
decimal format (2 bytes) used by the original field units.

Both digits are recorded (least significant digit first, then most significant digit)
as ASCII values between 0x20 and 0x29.

98 CERL TR 99/99

The following functions convert from ASCII forms to the forms used by the field
unit internally:

int conv_ascii2byte(char *string)
Returns the number (0-255) represented by the first two bytes of
“string”.

unsigned int conv_ascii2int(char *string)
Returns the unsigned integer (0-65536) represented by the first
four bytes of “string”.

int conv_ascii2date(char *string, struct date *datep)

Returns the date represented by “string” in the “datep” structure.

int conv_ascii2time(char *string, struct time *timep)

Returns the time represented by “string” in the “timep” structure.

float conv_ascii2peak(char *string)
Converts the ASCII peak value into a floating point peak value
that can be used by the monitor. This is done by converting the
input string to a 16-bit unsigned integer, then returning that
number, times 65536, as a floating point number.

float conv_ascii2sel(char *string)
Converts a 12-byte ASCII string representing a SEL back into a
floating point number. This is done by first converting the string
into a floating point number (starting with the LSB and accumu-
lating upward to the end of the number), then mulitplying the re-
sult by 2^32. Note that the 32-bit floating point number format
cannot exactly represent any arbitrary number written in this
form.

int conv_ascii2int3(char *string)
Converts a 3-character (12-bit) number stored in ASCII form to an
unsigned integer.

int conv_bcd2byte
Converts a Binary Coded Decimal (BCD) ASCII string into a num-
ber between 0 and 99. This is done by adding the first digit (minus
0x20) to 10 times the second digit (minus 0x20).

CERL TR 99/99 99

The following two functions can be used to convert the encoded date format (re-
corded as days after January 1, 1978) to and from the DOS “date” structure.
Note that this form is good until about 2067, so there are no Y2K issues with this
code.

unsigned int conv_date2int(struct date *datep)
Converts the DOS date structure “datep” into an integer day (in
days since January 1, 1978).

void conv_int2date(unsigned int datenum, struct date *datep)
Converts the integer number of days since January 1, 1978 into
the DOS date structure “datep.”

DSP.CPP and DSP.H

DSP.CPP is probably the most complex part of the field unit’s control software.
DSP.CPP contains the code to tenth-second blocks from the DSPs, detect thresh-
old conditions, and accumulate tenth-second blocks into manual and threshold
data blocks.

DSP.CPP is largely based on code inherited from a previous developer. There-
fore, it has a somewhat different structure than the other modules. It consists of
several classes; however, these classes should really be thought of as structures.
The structures are all “friends” of each other (so they have access to each other’s
private data) and very little data abstraction is actually done by the classes.

1? a degenerate class “Sample,” which matches the in-memory structure of the
tenth-second blocks collected by the DSPs and stored in the dual-port RAM.

2? “Block,” which accumulates the “Sample” blocks into larger blocks to create
manual input data blocks or threshold blocks.

3? “tDSP,” which defines the interface between the DSP board and controls
sampling and block formation

4? “tCommand,” a command priority queue to sequence operations.

DSP.CPP has a local function used for timing:

time_t dtime(time_t *timer)
dtime returns the unix-format time (seconds since January 1,
1970) and puts it into *timer (if *timer is not NULL.)

100 CERL TR 99/99

The Block class uses the following functions:

Block::Block(void) (the constructor)
This initializes a few of the variables of the block structure. How-
ever, it doesn’t clear out the actual data accumulation variables
Block::clear(void) does that.

void Block::clear(void)
This finishes the initialization of the Block by resetting all of the
block parameters: the block length, the sampling flag, the windy
flag, and all of the variables that accumulate the tenth-second
block data sent by the DSP.

void Block::start(void)
This initializes a manual, untimed (STOP/START) sample in the
Block by recording the start time and date, the type, and then
marking that sampling is occurring.

void Block::cstart(int ch)
This initializes a calibration in the Block for the channel specified
by ch (either 1 or 2, for the top or bottom microphone respectively)
by setting the sample time (100 block or 10 seconds), the current
time, the type, and the sampling flag to correspond to the calibra-
tion of either or both microphones. If ch is negative (-1, -2, or -3)
cstart begins a background check block. The background check is
used to verify that ambient noise is not too much for an accurate
calibration.

void Block::istart(int len)
This starts a manual, timed sample in the Block by recording the
length, start time, date, and type, and by marking the sample as
occurring.

void Block::record(tDSP *DSP)
This function is primarily responsible for dealing with a completed
block. This normally means displaying the completed block on the
screen and recording it into the data queue; however, many other
tasks are sometimes performed. These include:
• Handling calibrations, including split calibrations. (Split cali-

brations calibrate one microphone, and then the other. They are
useful on a microphone like the B&K 4184, which uses acoustic
calibrators the calibration of one can throw off the other.)

CERL TR 99/99 101

Split calibration is handled by performing two separate calibra-
tion blocks, which get merged by the record routine. Also, a cali-
bration includes a hidden “background check” block, which is
used to verify that the difference between the background sounds
and the calibrator is enough so that the calibration block is valid.
When the calibration block is complete, the internal record of the
calibration constants of each microphone is updated.

• Testing each block against the filters, and marking the block as
important, unimportant, or rejected. A rejected block is dis-
played, but not recorded in the queues. (The actual filter code is
contained elsewhere; record simply examines the results.)

• Translating “Block” structure into the data structure used by
DATA.CPP, and calling the functions to add the block into the
data queue.

Essentially, this procedure follows these steps:

• Initializes the block to be stored in the data queue to “not re-
jected” and “not important”

• If this is a calibration block and not a calibration background
check
– If this is the first block of a split calibration, hold the results for

later
– Otherwise:

ο If this is the second block of a split calibration, merge in
the previous results

ο Determine if this is a valid calibration block using the
background check results

• If this is a calibration block that was not rejected above
– If the microphone is not a B&K 4184, update the microphone

calibration constants for the calibrated microphones
– Set the type for the block for the queue
– Reset the recalibration interval to 2 minutes
– Schedule the next automatic calibration

• Otherwise, if the block was rejected:
– Reschedule the calibration for now plus the recalibration in-

terval
– Double the recalibration interval, but limit it to 2 hours

• Otherwise, if this is a manual, timed, or threshold block:
– Set the type of the block for the queue
– Assume that the block is important
– Check if the block passes the filter

102 CERL TR 99/99

– Using the filter, windy, and blast detection flags, determine if
the block is important and/or should be rejected.

– Copy in the acoustic data, display and store the block.
• Otherwise, if this is a background check block:

– Display and hold the values for future use

Block::stop(tDSP *DSP)

Stops data collection for a block. Records the block, then clears it.

tDSP::tDSP(PROC_ID *proc)
Initializes the DSP data collection module variables. This includes
clearing the manual and threshold data blocks, temporarily dis-
abling threshold data collection until the monitor warms up, and
resetting timeouts.

void tDSP::enableThresh()
Enables threshold data collection (if it is enabled in the configura-
tion).

void tDSP::disableThresh()
Temporarily disables threshold data collection.

int tDSP::thrMode()
Returns 1 if data collection is enabled, 0 otherwise.

int tDSP::calibInProcess()
Returns 1 if a microphone calibration is in progress.

int tDSP::checkCalib()
Returns 1 if a calibration is due, 0 otherwise.

void tDSP::setFutureDB(struct *sdate, struct *stime, int len)
setFutureDB sets up the collection of a future manual data block.
If len is 0, a pending future data block is cancelled. If len is not 0,
any pending future data block is replaced with the specification
provided.

The time for the future data block is set by sdate and stime. The
term sdate contains the fields da_day, da_year, and da_mon (day,
year, and month), and stime contains the fields ti_hour, ti_min,
and ti_sec. (It also contains ti_hund, which is ignored.) At the

CERL TR 99/99 103

specified time and date, a data block of len seconds will be taken.
Negative lengths mean that the calibration block should be turned
on for the data block.

int tDSP::checkFutureDB()
This checks to see if a future data block has come due. If so, it re-
turns the length of the data block that should be started in seconds
(negative, if the calibrator should be enabled); otherwise, it returns
0.

enum Thresholds tDSP::checkThresh()
This function should check the the various thresholds against the
trigger conditions set by the user in the configuration file, and
then return which of the many different thresholds were exceeded.
However, it works much better to not trigger unless all of the trig-
ger conditions are satisfied, so the behavior of this function has
been modified significantly.

The behavior of the threshold function is controlled by two #de-
fines, CROSS_PEAK and THRESH_OR. Normally, CROSS_PEAK
is enabled and THRESH_OR is disabled.

First, this function takes all of the relevant data from the “sam”
structure in the tDSP class, which contains the latest data col-
lected from the DSP board. These data are translated into acous-
tic decibel levels based on the latest calibration block taken by the
field unit, and held to compare against the threshold. The actual
peak measured by the microphone, a number in the range of 1-
32767, is stored for comparison against the “absolute peak”
threshold. If the monitor is set to use the input from both micro-
phones, the cross sums are used. If the “CROSS_PEAK” option is
set, the cross peaks are also used; otherwise, the geometric aver-
age of the two peaks is used.

If the “THRESH_OR” #define is included, all of the threshold con-
ditions must be satisfied before a checkThresh() will return a value
other than None. (If all of the conditions are satisfied, it arbitrar-
ily returns a value of AbsoluteThresh.) However, if “THRESH_
OR” is not defined, the conditions are checked in order (SELFlat,
SELCWeight, PeakFlat, PeakCWeight, then AbsolutePeak), and
the first condition that is satisfied will be returned.

104 CERL TR 99/99

Older versions of the field unit controller code had a problem that
prevented the absolute threshold from working properly if the
THRESH_OR mode was enabled.

int tDSP::checkFilter(void)
This works in much the same way as checkThresh, only it checks
an accumulated block against the conditions, not a single sample.
First, the variables for the various calibrated values are checked,
and then they are compared against the threshold values for the
filter. However, the filter always uses an AND structure all of
the filter constraints need to be satisfied for the filter to pass a
block. The filter also checks to make sure that the sample length
is in a particular range this can be used to reject blocks in
which wind constantly retriggers the field unit.

This function returns a 1 if the block passes the filter, or a 0 if the
block does not pass the filter. The exact result of passing or failing
the filter is controlled by the tDSP::record() function.

void tDSP::setcalconst(char chan, float lvl)
This function resets the calibration constant for a given micro-
phone. (The calibration constant is the number that is added to
the levels where 0dB = the minimum detectable noise level for the
microphone.) It also updates the scale for the level bars at the bot-
tom of the attached screen. (This is irrelevant for the modem con-
sole, as these bars are not present.)

void tDSP:setPost(unsigned char post)
This updates the cfg.posttrig_blocks configuration variable and
has been kept only for backward compatibility.

void tDSP:setPre(unsigned char pre)
This updates the cfg.pretrig_blocks configuration variable and has
been retained for backward compatibility.

void tDSP::synch(void)
This function synchronizes the call processor with the DSPs by
reading the next address to be written from the DSP’s synchroni-
zation registers. This is used to determine if new data are avail-
able in the tDSP::sample () method.

CERL TR 99/99 105

float tDSP::GetCurPeak(void)
This function returns the last flat-weight C peak (acoustic decibel)
returned by the DSP. It is used for the realtime peak display on
the console.

char tDSP::sample(void)
This function checks for new tenth-second blocks from the DSP; if
a block is available, it retrieves the block and processes it.

To do this, it first checks to see if a new sample is available by
comparing the DSP synchronization address (which contains the
next address to be written) with the stored value for the address.
If they do not match, it means a new data point has been written
since the last time tDSP::sample() was called, and it needs to be
collected.

If a new sample is available, sample() first calls Read_DPRAM_
Words_32() to collect one new sample, and advances the “current”
pointer so it points to the beginning of the block that was just
read. The sample read from the dual port RAM is read into the
“sam” structure that is part of the tDSP class. Then the sam
structure is adjusted to prevent bad data from causing domain er-
rors for the log function. To do this, the absolute value of each
value returned by the DSP is taken (it is possible for the cross
peak and cross sums to be negative), and 10-37 is added to each re-
turned value. This assures that, when the logarithm of the sample
data is taken, a domain error will not result. (The logarithm is
taken as part of the conversion to decibels.)

After the block is taken from the DSPs, it is processed. The first
step in processing is to record the block into an active manual data
block (the manual data block is also used for taking calibration
blocks and calibration background checks; to tDSP::sample(), it is
really just a timed sample). The new sums are added into the
channel and cross sum fields. The peaks are compared against the
highest peak already recorded and are updated if new data are
available. The updated peak position is calculated using the peak
position inside the sample (which is measured in microblocks of 24
samples each tenth-second block has 200 microblocks) plus 200
times the length of the existing part of the block. The BDA blips
(blast detection algorithm “hits”) is then accumulated and the
“windy” bit is set if applicable. (The “windy” bit indicates that any

106 CERL TR 99/99

part of a sample exceeded the wind threshold.) The variable
“manual.downCnt” is decremented; when this variable reaches 0,
the manual block is ended using the record() and clear() methods.
The manual block can also be ended explicitly by clearing the
“manual.sampling” variable.

After the manual/timed data blocks are dealt with, tDSP::sample()
updates the displayed data calibration offset. Ideally, this would
be done elsewhere; however, it works here, and no strong reason
exists to move it. If the cfg.use_cal variable is set, the acoustic
decibel level is shown in the LAST PEAK and previous block fields
on the console; if it is left unset, all decibel levels are in relation to
the minimum detectable sound. (The -96.33 dB correction is be-
cause all values returned by the DSP are multiplied by a factor of
65,536.) Using the calibration offset, the peak from this tenth-
second block is saved in “lastpeak” for display.

The next step is to handle the threshold blocks. First “check-
Thresh” is called to see if the threshold is exceeded. The threshold
is checked to see if it is disabled by looking at cfg.thrsam (the user
threshold enable bit) and thr_disable (used to disable threshold
blocks when the a calibration block is being taken.) If the thresh-
old is disabled, threshold blocks are explicitly disabled.

If the threshold has been exceeded, a threshold block is started.
This is done by storing the start time and date in the block using
gettime and getddate, setting threshold.sampling, and then adding
in the pretrigger information. The pretrigger information is re-
trieved from the circular data queue in the DSP dual-port RAM by
retrieving previous blocks. This limits the number of pretrigger
data blocks available to about 45, leaving some buffer space
against delays elsewhere. No explicit check is made to ensure that
this limit is not exceeded. The previous tenth-second blocks are
not checked to determine if they were windy; however, the windy
bit “sticks” for a certain amount of time.) The code then loops
through the pretrigger blocks to add them to the threshold block.
Finally, if a threshold block is currently being sampled, the block is
updated with the current data stored in “sam.” Like the manual
block, the end of the threshold block is controlled by the downCnt
variable. If the threshold is exceeded, the downCnt variable is re-
set to the posttrigger blocks configuration variable; otherwise, it is
decremented. (The first tenth-second block in a threshold block

CERL TR 99/99 107

will always be the trigger block, so downCnt will be set.) When
downCnt hits 0, or a programmed sample timeout is exceeded, the
block is stopped and recorded using the threshold.record() and
threshold.clear() functions.

Last, a word is returned telling the caller what is being done by re-
turning the BDAblips, threshold.sampling, and manual.sampling
flags.

tCommand::tCommand(tDSP *pDSP)
This initializes a command queue for the DSP class pointed to by
pDSP.

The command queue class sequences DSP operations. It is used
primarily to handle calibrations, which are a multistep process. It
is also used for some delayed operations (for instance, if a manual
block cannot be started immediately, it is placed in the queue). It
uses a heap-ordered priority queue, where the next operation to be
done is always stored at the top of the queue.

int tCommand::enq(Instr comm, time_t exTime, int argt)

This function inserts the value “comm” into the priority queue at
time “exTime,” and resorts the queue so the first entry in the
queue is the next instruction to be executed. “comm” is an enum
that contains one of several valid commands:

TERMINATE: Ends the field unit control program
START: Start a manual sample block
TSTART: Start a timed data block. Argument “argt” is the length

of the data block; a negative number indicates that the cali-
brator should be turned on for the data block.

CSTART: Start a calibration data block. The “argt” indicates
which channels should be calibrated; 0 means use the de-
fault; 1 means channel 1 (the top microphone), 2 is the bot-
tom microphone, and 3 is both. This simply fills the queue
with a sequence of other commands (TSUSPEND, CBEGIN,
CENABLE, CDISABLE, CEND) to implement the calibration
procedure. The calibration procedure is described by the
enq() commands contained in the implementation of the
CSTART command. It also sets the “calibrating” flag.

CEND: This clears the “calibrating” flag. (DSP.cal_in_progress)

108 CERL TR 99/99

CBEGIN: This starts an actual calibration or background check
sample. If the argt is positive, the indicated microphone (or
microphones) is calibrated; the calibrator is assumed to be
on. If argt is negative, a background check is started.

CENABLE: This enables the microphone calibrators. “argt” indi-
cates which microphone calibrator is to be turned on: 1, 2, or
3 for both.

CDISABLE: This disables one or both microphone calibrators.
TSUSPEND: This temporarily suspends threshold data collection

by setting DSP.thr_disable.
TENABLE: This reenables threshold data collection by clearing

DSP.thr_disable. (Threshold mode cannot be enabled if the
calibrators are on.)

STOP: This stops a currently running manual sample.

int tCommand:hot(void)
This returns 1 if the top command in the command queue is due.

int tCommand::print(void)
This displays all of the commands on the command queue. It is
used only for debugging.

void tCommand::pop()
This removes the top entry in the queue, and moves the next earli-
est command into the first position of the command queue.

void tCommand::swap(int i, int j)
This swaps two entries in the command queue. It is used to main-
tain the heap ordering of the queue.

int tCommand:execute(void)
This function checks if the top command in the command queue is
due; if it is, it executes it.

DSPERR.CPP and DSPERR.H

This source file contains only one function:

void printError(unsigned int error)
printError displays an error message associated with a DSP API
(C4XAPP) error code.

CERL TR 99/99 109

ENVIRON.CPP and ENVIRON.H

ENVIRON.CPP contains the code that handles closed-loop environmental con-
trol. It reads out the temperature from the sensor on the WDT-501P watchdog
board, and uses that information to control the heater and fan inside the case of
the monitor unit.

unsigned char env_status_byte(void)
This function generates a status byte similar to the status byte for
the old field unit design to report back to the base station. It indi-
cates the temperature of the monitor unit to within 10-degree-C
ranges, as well as over-voltage and under-voltage flags. It re-
trieves the current temperature from the value stored by
env_periodic.

void env_periodic(void)
This function is called every iteration of the main loop. It has two
main tasks: determine the current temperature inside the monitor
case, and to try to keep that temperature within “reasonable” val-
ues.

To determine the temperature inside the case, it takes a reading
from the watchdog board at most every clock tick. Eighteen read-
ings are accumulated and averaged; the average temperature is
stored in env_temp approximately once every second. (This
smoothes out variation and appears to give a more precise meas-
urement of the internal temperature.)

Also, every time through the loop, the current temperature is com-
pared against a set of thresholds for which the field unit will take
action. If the temperature is above 30 °C and the fan is not on; it
is turned on; if the temperature is below 20 °C and the fan is on, it
is turned off. If the temperature is below 12 °C and the heater is
off, it is turned on; if the temperature is above 20 °C and the
heater is on, it is turned off. (Note that these thresholds are
somewhat lower than those of the original field unit.)

Last, this function generates environmental warning blocks.
Temperature warning blocks are generated when the temperature
inside the unit exceeds 45 °C or falls below 5 °C. At these
extremes, damage to the unit may occur. After a warning block is
generated, a flag is set to prevent another warning block from

110 CERL TR 99/99

being generated until the temperature falls below 43 °C or rises
above 7 °C. This prevents memory from being filled with
environmental warning blocks. Similarly, under-voltage and over-
voltage warning blocks are generated whenever the voltage
monitors inside the indicate the voltages are outside of tolerance
 a new warning block will only be generated if the voltages
return to a normal range.

void env_make_status(char type)
This function makes a status block out of the current environ-
mental data. It must be passed an ‘E’ (temperature warning block)
or ‘F’ (voltage warning block). After the block is generated, it is
automatically displayed and stored.

int env_heat(int cntrl)
This function accepts the following options for cntrl:

1 Turn heater on
 0 Do nothing
-1 Turn heater off.

It returns the current state of the heater: 1 is on, 0 is off. It will
only turn the heater on or off if it has been more than 20 seconds
since the last time the heater changed state this allows testing
and reduces oscillations.

int env_fan(int cntrl)
This function controls the fan in exactly the same was as env_heat
controls the heater.

float env_get_temp(void)
This function returns the last temperature calculated by
env_periodic().

int env_get_overvolt()
This function returns 1 if the watchdog board reports any voltages
being too high.

int env_get_undervolt()
This function returns 1 if the watchdog board reports any voltages
being too low.

CERL TR 99/99 111

MAIN.CPP and MAIN.H

MAIN.CPP contains the main loop and dispatches the various other functions. It
also contains the startup and shutdown code for the field unit.

The top of MAIN.CPP contains a bunch of #defines for addresses of various com-
ponents and other options. These will not need to be changed assuming the
hardware is built with the same configuration as the test unit. These options
are:

VIDEOBUFBASE: 0xB8000001 is the correct number for a VGA controller.
A monochrome controller would require 0xB0000001.

WDT_ADDR: 0x2A0 is the base address for the WDT-501P watchdog
board.

WDT_IRQ: The WDT-501P watchdog board uses IRQ 10.
PPORT_BASE: The “standard” first parallel port is 0x378; however,

0x3BC might be used also.
MIDNIGHT_REBOOT: If this option is set, the field unit reboots each night at

approximately midnight.

MAIN.CPP also declares a few global variables that are used in other modules.
The variables “quit” and “rc” are used in CMD.CPP as part of the EXIT and
KERMIT commands if “quit” is set to 1, the monitor exits with the return code
“rc.” The variable “sh” provides the screen height to other modules, and the
variables *dspPtr and *qPtr provide a pointer to the DSP class.

On startup, the noise monitor runs main(), the standard startup function for C
and C++ programs. The first thing that the control software does upon startup
is parse the command line options. These options point to the location of the
DSP images to be loaded into the DSP RAM. Also, a few debugging options are
provided. These debug options must follow the DSP paths. They are “/NOCAL”
which disables automatic calibration, “/NOWM” disables the wind meter, and
“/NOWD” disables the watchdog timer. Use of these three options makes debug-
ging considerably easier, because the software will not crash or reboot if you
break into it with a debugger. (If more than one of the “/NO” options is used,
they must appear in the order described above.)

The control software then resets the parallel port, which turns off its outputs.
(The parallel port outputs control the heater, fan, calibrators, and the status
LED.) The screen is cleared, the banner is displayed, and then the field unit be-
gins initializing itself. First the DSPs are initialized, and then the sampling
class (tDSP) is initialized. ReadConfig() and ReadBuffers() are called, which

112 CERL TR 99/99

read in the field unit configuration and the data queue, and the number of re-
boots is incremented. (The field unit keeps track of the number of times that it
is booted as a diagnostic.) Then the help system is initialized by calling
init_help(). The parameter for init_help is the directory to look into for the help
file. It is passed an empty string, which means the current directory (for the
field unit, this is “A:\”). Ideally, this would read an environmental variable so
that the help files could be changed without rewriting the ROM.

Next, the field unit initializes the serial port. Of the two serial ports (the console
serial port and the modem port), the field unit initializes the modem port first.
Initializing a serial port involves several calls. First, it calls init_port, which
specifies the port (1 or 2), port speed, parity (always none), data bits (8), and stop
bits (1). It then calls init_handl() and init_buffer_out to initialize the queued se-
rial I/O driver. Once the modem port has been initialized, the console port is ini-
tialized and activated. The scmask() variable accepts a bitmap specifying a “1”
in bit 0 for COM1 or bit 1 for COM2 — this mask indicates which serial ports
receive console activity.

After the serial port drivers are initialized, the monitor sends a string to the con-
sole serial port to identify if it was mistakenly set to a port with a modem or an-
other device that loops back incoming data. (This would result in massive
amounts of garbage filling the input buffer.) To check this, it sends a string that
includes 10 non-ASCII characters (character 255, which prints as a space). The
input loop looks for these characters and disables the console port if they are
found. The modem is then initialized by calling m_init_modem(). This function
sends the modem initialization string to the modem, to initialize auto-answer
and other modem options.

Next, the control program initializes the watchdog board by calling
WDT_SetAddress(), and then initializes the wind meter (which uses the watch-
dog board to collect data) by calling wind_init, then calling wind_set_params and
wind_set_wind meter to set the wind meter parameters and type as specified by
the field unit’s configuration. Last, the field unit enables the watchdog timer
and hooks the watchdog card’s interrupt (which is used to detect change-of-state
on the wind meter input.) The watchdog card is set to reboot the system if it is
inactive for 1 second by using a timeout of 1000 ms.

The last part of initialization is to display a blank input line and schedule an
automatic calibration. The field unit automatically schedules a calibration for 3
minutes after startup, which allows plenty of time for the microphones to warm
up.

CERL TR 99/99 113

Before the main loop begins, the monitor calls DSP.synch(). This synchronizes
the control software with the DSPs, and ensures that the sample data that is
taken represent the latest data available. A minimal amount of time should pass
between the call to DSP.synch() and the first call to DSP.sample(), which will re-
trieve any new samples that are available.

After the initialization section of MAIN.CPP comes the main loop, which dis-
patches all of the important tasks of the monitor. The first part of the main loop
is the basics: handling incoming data blocks, queued events, incoming serial
communications, status, handle any console keystrokes, and closed-loop envi-
ronmental controls. The system handles these basics by calling single functions
located elsewhere updatelites, checkSerial(), and checkConsole() are in
MAIN.CPP; env_periodic is in ENVIRON.CPP; and DSP.sample() is in DSP.CPP.
After the basics are complete, a few more select tasks need to be done.

First, 1 out of 30 times through the loop (which helps ensure that the controller
does not fall behind while under heavy load), the field unit writes a single data
block out to disk. It does this by calling WriteConfig(), which will return 0 if it
has nothing to write. If WriteConfig() has nothing to do, WriteSegment() is
called to write a segment of the data queue to disk.

Next the field unit checks to see if a calibration is pending using
DSP.checkCalib(); if so, it enqueues a configuration request (CSTART) onto the
DSP event queue. The DSP then checks for a future data block. If a datablock is
waiting, it is enqueued. If none is pending, DSP.checkFutureDB returns 0.

Next, the controller checks to see if any changes to the serial port configurations
have been made. If so, and no one is using the modem console, the serial port
subsystem is restarted. This allows changes to the serial configuration to be
made from the serial port or remotely. Without the check for a remote user, one
would immediately be knocked offline by any changes.

Finally, if the MIDNIGHT_REBOOT compile-time option is set, the field unit
checks for the BIOS clock rollover. (If the BIOS clock rolls over, it indicates that
midnight has passed.) If so, it explicitly disconnects the field unit from the base
station, and then reboots if not currently connected. (This gives the field unit
time to cleanly disconnect from the base station, and prevents lost or duplicated
data blocks.)

The last part of main() is the shutdown code. After cleaning up the console
somewhat, the shutdown proceeds. First it creates an “exit timeout” variable to
protect against the code that writes data out to disk from not terminating the

114 CERL TR 99/99

loop. The field unit will only prompt the watchdog while waiting for WriteCon-
fig() and WriteSegment() to complete if it is less than 60 seconds after flushing of
the queues starts. After setting the timeout, the field unit flushes the queues by
executing WriteConfig() until it returns 0 (if the configuration needs to be syn-
chronized, WriteConfig() may need to be called twice to update both copies). It
then calls WriteSegment() until it returns 0 as well. (WriteSegment() may need
to write as many as 64 blocks to disk.) After synchronizing the data queues, the
serial console is turned off, the DSPs and the DSP control library closed down,
and the watchdog reprogrammed for 30 seconds. These steps are to ensure that,
should KERMIT or the watchdog monitor TSR fail to start, the field unit will re-
turn to the data collection mode. Finally, exit(rc) is called to terminate the pro-
gram with return code rc. The return code is used to determine whether
KERMIT should be started, or the field unit should simply reboot.

The field unit can return an error code of 1 to 100 to indicate internal errors. If
this happens, the field unit will automatically fall back into the ROM version of
the program code. Error code 0 indicates normal completion; the field unit will
reboot and start again. Error code 101 indicates that WDMTSR should be
started on COM1, and then KERMIT should be executed; 102 indicates
WDMTSR is to be started on COM2.

MAIN.CPP also includes several other routines that implement various portions
of the main loop. These include:

void SpinnyThing(void)
This function updates a “spinny thing” in the corner of the console
that indicates that the field unit’s main loop is executing. It also
prompts the watchdog, which postpones the automatic reboot for
another second.

void BlinkLED(int ontime, int offtime)
This function blinks the Status LED (the yellow LED on the 24-V
board) on and off. The ontime and offtime numbers are given in
clock ticks the LED is on if { (ticks-since-startup%(ontime+ of-
ftime) < ontime }. It should be called as frequently as possible to
ensure that the LED has the correct duty cycle.

void checkSerial(void)
This function calls m_periodic() to handle the low-level modem
protocol (which includes placing and receiving calls, and sending
and receiving packets). It then checks to see if a packet or an

CERL TR 99/99 115

acknowledgment of a sent packet has arrived; if so, it calls
process_pkt() or process_ack() to handle the packet.

Last, it checks to see if any important blocks have been collected,
or if the number of blocks in the queue is greater than the thresh-
old number of blocks before it calls the base station. If either of
these cases is true, it calls m_connect() to attempt to call the base
station. (m_connect will ignore any requests that have not
changed from previous requests.)

void checkErr(UINT error)
This function checks for failed DSP initialization functions. It
then displays any applicable error code (“No Error” is displayed if
no errors have occurred), and exits with exit code 1 if an error has
occurred.

void createbars()
This function draws the scale for the bars shown on the bottom of
an attached monitor. It is called after calibrations or if the “SET
USE_CAL” function is invoked.

void bar(int row, int start, int endbar)
This function fills in a bar on the bottom of the screen with red
from column “start” to column “endbar,” and with black the rest of
the way to the right edge of the screen.

void updatebars(float CSEL, float FPK)
This function is a stub, whenever a block is taken, that simply rec-
ords the values passed into it into a more accessable location:
status_sel and status_peak global variables.

void updatelites(char sam, tDSP *dsp)
This function updates all of the status indicators on the main
screen, and calls BlinkLED() and SpinnyThing(). The status bar
at the top of the screen is drawn using scslprintf(), which echoes
the status bar to the serial and modem consoles. The rest of the
status indications are only displayed on the attached VGA monitor.

The status bar is explained by the help entry “HELP STATUS.”
Because some terminal programs have difficulty with the ANSI
sequences used to create the status bar, it can be disabled. If the
status bar is disabled (with STATUS OFF), the status bar is not

116 CERL TR 99/99

displayed on the main screen either. However, all of the bars and
lights on the bottom of the screen are still displayed and updated.

The pokeb(0xb800, ...) variables are used to update attributes and
characters shown on the screen. 0xb800 is the segment of a VGA
video controller many of the bars and lights will fail on a mono-
chrome video adapter.

char display_input(char *string, int line)
This function displays the last 79 characters of the user’s input
line and the cursor on the attached VGA display. This function
will not fail on a monochrome adapter if the VIDEOBUFBASE
variable is changed. The string to be displayed is *string (if it is
longer than 78 characters, it scrolls off to the left), and line is the
line number to display the string on. A blinking block character is
displayed at the end of the string as a cursor.

char checkConsole(void)
This function checks for any characters waiting from the keyboard
or a serial console. If characters are waiting, it adds the charac-
ters to the input string if they are printable and the maximum
string length of 127 has not been exceeded. If the character is 13
(carriage return), it calls do_command() to execute it. If the char-
acter is 8 (BS) or 127 (DEL), it erases the last character from the
input command; 18 (CTRL-R) resends the string to any remote se-
rial consoles, and 27 (ESC) cancels any waiting string and erases
the command line.

This function also checks for any characters over ASCII 127 to ap-
pear in the first few seconds of operation. If they appear, it is as-
sumed that there is echo from the console serial port, and
scmask(0) is called to disable it.

void WDThook(int status)
This function is called whenever a watchdog interrupt occurs. If
the watchdog interrupt source is a 0 to 1 transition of the wind
meter input, the wind_blip() function is called. The wind_blip()
function maintains counters of how many wind meter 0 to 1 transi-
tions have occurred; these are used to measure wind speed.

CERL TR 99/99 117

PACKET.CPP and PACKET.H

These functions handle the high-level packet interface and would need to be ex-
panded to add a more complete data interface to the field unit (i.e., to allow col-
lection of all the data that the monitor collects, not just parts of it). At the lowest
level, the protocol used by the noise monitor is a basic command/response
scheme. The monitor receives a request from the base station and sends back
either a response packet or an acknowledgment. If the response is a packet, the
monitor waits for an acknowledgment before it assumes that the packet has ar-
rived. The field unit follows the Lendrum/Averbuch protocol specification, at-
tached as Appendix F.

PACKET.CPP includes the following functions:

int process_ack(void)
This function processes an incoming acknowledgment, if one ex-
ists. If not, it returns a 1. As part of processing the acknowledg-
ment, the field unit will delete any data queue block that has been
sent to the base station and acknowledged. (The block is not de-
leted until the acknowledgment is received. Therefore, it is possi-
ble for the block to be sent twice if the acknowledgment is lost and
then the field unit disconnects; however, it is unlikely for the block
to be lost.)

int process_pkt(void)
This function accepts an incoming packet and dispatches it based
on its type (which is identified by the first character in each
packet.) The packet is dispatched to the function pkt_inX(packet),
where X is the type, and packet is a null-terminated string con-
taining the packet.

void Amakeblock(struct DataBlock *datum, char *response)
This function converts the data block *datum from the internal
format into the format specified by the Lendrum/Averbuch protocol
specification. The converted packet is returned in the area pointed
to by response.

void pkt_inA(char *packet)
This function checks for any packets waiting to be sent. If a
packet is waiting, the function calls Amakeblock to construct a
block from the oldest data block in the queue, marks that a data

118 CERL TR 99/99

block is currently in transit, then calls m_putpacket to send the
block. (The datablock_pending flag indicates that, when an ac-
knowledgment is received, the oldest block in the data queue is to
be deleted.) If no blocks are waiting to be sent, a block of type “C”
is constructed and sent instead. This block indicates that the data
queues are empty.

int Bmodeget(int mode, char *response)
This function returns, in the memory pointed to by response, a
packet giving the current state of the mode specified by mode. It
does not handle a mode of zero, which specifies that all values
should be returned. The exact format of the returned packet is
documented in the Lendrum/Averbuch specification. The returned
packet includes only the data itself; the type header is added by
the calling procedure. If response does not point to an empty null-
terminated string, the mode string constructed is appended to the
existing string.

int Bmodeset(int mode, char *set)
Bmodeset accepts a mode parameter in mode, and sets it to the
data in set, as described by the Lendrum/Averbuch specification. If
mode is 14 or 10 (the specification and the field unit software dis-
agree on this), the field unit empties its data queues. The received
mode is placed into the cfg structure, and then ConfigDirty() is
called to request flushing the configuration to nonvolatile storage.

void pkt_inB(char *packet)
pkt_inB handles type B packets, which set and retrieve field unit
modes. If mode (the second character of the packet - 0x20), is
0x1A, a calibration request is queued. If mode is between 0x10
and 0x1F, mode-10 is passed to the Bmodeset function with the re-
set of the packet, which sets a field unit mode. If mode is between
0x01 and 0x0F, it is passed to Bmodeget. If mode is 0x00, Bmode-
get is called repeatedly to accumulate all of the mode information
into a single packet. Once the packet to send is assembled, it is
sent.

Note that, if a mode is set, it is then retrieved and sent back as a
confirmation.

CERL TR 99/99 119

void pkt_inC(char *packet)
This function simply assembles a packet type ‘G’ with the unit’s
number and sends it.

void pkt_inD(char *packet)
The listen mode is not supported by this field unit design, so the
field unit simply acknowledges the listen request and hangs up.
This should be corrected in a future hardware revision.

void pkt_inE(char *packet)
This function adds a TSTART event to the DSP’s command queue,
scheduling an immediate, manual data block. It then acknowl-
edges the receipt of the manual data block request.

void pkt_inF(char *packet)
This function schedules a future data block. Note that only one fu-
ture data block can be scheduled. If a new future data block is
scheduled before a previous block is taken, the previous block
specification will be overwritten. Because setFutureDB echoes the
data in the block, the display is modified in strange ways extra
code is required to clean up the console.

Once the future data block is scheduled, an acknowledgment is
sent back to the base station.

PPORT.H

This header provides macros to manipulate the peripherals attached to the par-
allel port. These peripherals are:

CALIB1: The calibrator on microphone #1, the top microphone
CALIB2: The calibrator on microphone #2, the bottom microphone
LED: The status LED attached to the 24-V board
FAN: The case exhaust fan
HEATER: The 1000-W heater/fan attached to the left side of the field unit.

The macros provided by the file are:

PP_RESET:

PP_RESET turns off all the peripherals attached to the parallel port.

120 CERL TR 99/99

PP_SET(x):

PP_SET turns on the peripheral x, where x is one of the peripheral names
above.

PP_CLEAR(x):

PP_CLEAR turns off the peripheral x.

PP_GET(x)

PP_GET returns the current state of peripheral x, where 1 is on and 0 is
off.

PROTOCOL.CPP and PROTOCOL.H

These source files contain the code to implement the low-level data protocol de-
scribed by the Lendrum/Averbuch specification. This protocol is compatible with
(though not exactly identical to, especially in terms of timing) the original CERL
field units, and fully compatible with the base station software when running at
300 bps using transmit pacing.

This module is a little hard to follow because of the myriad of different modes
supported by the protocol implementation. The closest compliance to the Len-
drum/Averbuch specification is achieved by setting the protocol to do transmit
pacing, which limits the number of output characters sent to approximately the
bps rate of the outgoing modem connection. Without transmit pacing, the field
unit’s automatic retransmissions of packets can overrun a 300 bps connection,
and the base station expects nearly instant responses to acknowledgement
(ACK) or negative acknowledgement (NAK) packets. The transmit pacing re-
duces the overrun, allowing proper behavior. For practical purposes, this module
can (and should) be considered a black-box implementation of the low-level pro-
tocol. All of the functions here return immediately; any future actions are han-
dled by the m_periodic function.

This function contains the following user functions:

void m_periodic(void)
This should be called from the field unit’s main loop. It handles
protocol maintenance, transmit and receive pacing, packet re-
transmissions, dial outs, and most of the protocol.

CERL TR 99/99 121

int m_console_off(void)
This function disables the field unit modem console mode. This
automatically occurs when the modem’s carrier is lost.

void m_init_modem(void)
This function requests that the modem be initialized by resending
its initialization string.

int m_connected(void)
This function returns 1 if the modem is connected to a base sta-
tion. (Note that it returns 0 if the modem is connected but in con-
sole mode.)

void m_connect(char *phone)
This function requests a connection be made to the specified phone
number. Note that subsequent requests to connect with the same
phone number will not have any effect; additional attempts will be
made at intervals that begin at 2 minutes and double every time
thereafter. The maximum interval is 2 hours.

Calling m_connect() with a null string as the *phone parameter
will cancel any pending redial attempts.

void m_disconnect(void)
This function disconnects the modem from the base station by
sending multiple data link escape (DLE) characters. The modem
will then be forcibly disconnected after a half-second delay.

unsigned int m_get_speed(void)
This function returns the current speed of the connection to the
base station.

int m_getpacket(char *pkt)
This function returns a waiting packet, if available. The packet
goes into *pkt, and the return code is one of the following:

0 No pending packets
>0 Length of packet received and placed into *pkt
1 An ACK packet was received from the base station.

122 CERL TR 99/99

int m_putpacket(char *pkt)
This function sends a packet. It returns 0 if a packet is still
pending (has not been acknowledged); otherwise, it returns 1.
There is currently no way of canceling an outgoing packet that has
not yet been acknowledged. (A packet can be acknowledged by ei-
ther the receipt of an ACK character or the receipt of a valid
packet.)

int m_acknowledge(void)
This function sends an acknowledgment (an ACK character) to the
base station. It returns a 0 if another packet is currently pending;
otherwise, it queues the acknowledgment for transmission.

int m_inpacket(void)
This function has the same return codes as m_getpacket, but does
not receive an incoming packet. It is intended as a check for
waiting packets.

int m_outpacket(void)
This function returns the length of any pending output blocks.
The latest version of the monitor code changes this function so it
returns a -1 if an acknowledgment is pending. Older versions re-
turned 0 if an acknowledgment was pending, which is a “bug.” If
no output blocks are pending, this function returns a 0.

The following additional functions are provided by the PROTOCOL.CPP module,
but there should be no need for code outside PROTOCOL.CPP to use them.

int m_console_esc(void)
This function returns 1 if a console escape has occurred. There
should be no need to use this function from a user program.

int m_console_on(void)
This function enables the field unit modem console mode. Nor-
mally, the field unit console is enabled and disabled automatically
by the protocol module, so there should be no need for this function
to be used in user code.

The interface to PROTOCOL.CPP hides quite a bit of its complexity. It has sev-
eral variables and functions that warrant more detailed descriptions, and a few
private functions that are not described above. The meanings of the private

CERL TR 99/99 123

variables are all documented in the code’s comments; however, a few of the func-
tions are difficult to follow.

Local functions in PROTOCOL.CPP include:

void m_dump_output(void)
This function clears any pending output in the data buffers. Un-
fortunately, it does not work efficiently, because the Sportster 33.6
kbps modem will accept data into its buffers as fast as it can be
transmitted by the machine, not at a flow rate limited by the “con-
nection speed” programmed into its universal asynchronous re-
ceiver/transmitter (UART). Data that have already arrived in the
modem’s buffer cannot be canceled, so transmit pacing is used in-
stead. This function also cancels any pending output block, which
effectively cancels the paced transmissions.

void m_flowcontrol(int status)
This function is automatically called by the status change inter-
rupt on the modem line. It is used for several purposes. First, it
updates a line monitor on an attached video graphics array (VGA)
screen (if the LINE_MON #define is set). Second, it is responsible
for flow control (by disabling the transmit interrupt whenever
Clear to Send [CTS] is cleared, and re-enabling it when CTS is
set). If the modem hangs up, this function turns off the modem
console, resets the flow control variables, and sets the speed of the
modem to full speed. It also somewhat supports “braindead mo-
dems” enabled by the “BRAINDEAD_MODEM” compile time op-
tion, which is intended to help deal with modems that do not prop-
erly handle the data carrier detect (DCD) line until they are
initialized. It is not certain that this option works properly, how-
ever. (This code was intended to allow an Octagon 2400-bps wide-
temperature-range modem to work; however, this modem was
found to have other problems that made it unsuitable for the field
unit.)

This function also reinitializes the modem if a rising edge is seen
on the data set ready (DSR) signal, which means that the modem
has been turned off and back on or plugged in (this is not really
applicable to the internal modem used in the field unit). Also, if
the modem detects a ring, it cancels any pending outgoing calls,
and records the time of the ring detection.

124 CERL TR 99/99

chksum(x) (MACRO)
This macro updates the current block checksum (stored in
m_inblock_checksum) to include the additional character x.

record(x) (MACRO)
This macro adds a new character x to the incoming block
m_inblock, and updates the length m_inblock_len.

dump() (MACRO)
This macro resets the length of the input block and the input state
machine, and sends a NAK to the modem. It is used when some-
thing appears to be wrong with the incoming data to request an-
other attempt to send the packet.

bcase (MACRO)
A shorthand for a break followed by another case statement.

void m_process_char(int chr)
This function is called whenever a new character is received from
the modem. It handles all of the low-level details of the packet
formation, as well as other things such as the console escapes.
Most importantly, this includes the packet-receiver state machine.

SERCON.CPP and SERCON.H

These two source files provide the console interface to the rest of the program.
All console accesses should go through one of these functions (scprintf, scputs,
scputch, scslprintf, scgetch, scgetche, and scwaiting) to ensure that they work
properly in the serial console mode and for remote access through the modem.

The functions defined in this module are:

int scmask(int port_mask)
This updates the port mask. If the input port_mask is –1, the cur-
rent port mask is returned.

There are four valid port masks:

0 no serial ports in console mode
1 COM1 is a console, COM2 is not
2 COM2 is a console, COM1 is not
3 both COM1 and COM2 are consoles.

CERL TR 99/99 125

 Normally, the console serial port will always be enabled. The modem
port will be enabled by the software when the escape sequence of 10
Ctrl-A characters is received.

int scprintf(char *format, …)
This is the same as Borland’s cprintf() which puts (a printf() for
Borland’s “conio” text formatting functions, but sends results to se-
rial console as well.

int scputs(char *str)
This is analogous to Borland’s cputs(); or c’s puts() function. It
sends a string to all active consoles.

int scputch(int ch)
This is analogous to Borland’s cputch(); c’s putch(). It sends a sin-
gle character to all active consoles.

int scgetch(void)
Like getch(), waits for a single character to become available from
any active console, and returns it without echo.

int scgetche(void)
Like getche(), waits for a single character to become available from
any active console, echoes it, and returns it.

int scwaiting(void)
Returns 1 if a character is waiting and getch() or getche() will re-
turn immediately if called; 0 otherwise. Since a “realtime” system
is being used, where unterminated delays cause problems, always
check for an available character with scwaiting() before actually
retrieving a character.

int scslprintf(char *fmt, …)
This formats a string as printf would, then displays it on the
status line of all consoles. Note that the status line is not “pro-
tected” on the serial consoles, so this needs to be called on a regu-
lar basis. (The status line will only be updated if no data are
pending, and sufficient time has elapsed since the last update.)

126 CERL TR 99/99

WIND.CPP and WIND.H

These two files contain the code to handle the wind meter, which is implemented
using the isolated inputs on the watchdog card. These inputs trigger an inter-
rupt, which is dispatched by the WDT501 handling code to wind_blip() function.
For timing, the wind meter also hooks the BIOS 55-ms timer interrupt. The
wind meter is assumed to be of the chopper type, and the number of pulses per
second is proportional to wind speed.

Although the interface with the base station uses the number of ticks in a sam-
ple interval to measure wind speed, proper operation of the field unit’s console
commands require that the field unit be aware of the actual performance charac-
teristics of the attached wind meter. The wind meter’s response is specified with
two numbers the multiplier and the addend which define the following re-
lationship between the number of measured pulses per sample interval and the
actual wind speed:

rvalSampleInteaddendspeedmultiplier
rvalSampleInte

Pulses ×−⋅=))((

To mark blocks as windy, set a local “windy_flag.” When this flag is set,
“wind_countdown” is also set to be the number of remaining clock ticks until the
windy flag times out. This is decremented every timer tick so that, when it
reaches 0, the windy flag is cleared. If the threshold is exceeded before the
countdown completes, the countdown is reset to its original value.

The wind meter reads its wind meter configuration from the configuration path
(read from the configuration file). It is stored in a file called “WIND.TXT,” which
has the following format:

<windmeter name>%<addend>%<multiplicand>%

where the wind meter name is used to refer to the configuration when setting
the wind meter by name.

Interface:

void wind_init(char *path)
This initializes all of the interrupt handlers necessary to deal with
the wind meter. It hooks the clock interrupt (which also is used for
timing much of the rest of the code) and the watchdog interrupt

CERL TR 99/99 127

vector, reads the wind meter table, and registers shutdown code to
unhook the interrupts it hooks.

void wind_deinit(void)
This unhooks the clock interrupt, which allows the monitor to be
shut down safely. Initialization adds this to the exit hook, so it
will be run automatically upon termination.

void wind_set_params(int threshold, float interval, float timeout)
This sets the windy-flag parameters. The threshold is the number
of wind meter pulses that must be received in a sample interval.
The interval is the length of time that the wind meter code accu-
mulates pulses. Both the interval and the timeout are measured
in seconds. After the threshold is exceeded, the windy flag is set
and remains set for timeout seconds. Note that timeout should be
greater than or equal to the sample interval to ensure that the
windy flag stays on for the entire sample interval.

void wind_get_params(int *threshold, float *interval, float *timeout)
This returns the previously set threshold, interval, and timeout.

void wind_set_wind meter(float multiplier, float addend)
This sets the multiplier and addend used to translate between ab-
solute wind speed (in miles per hour) and the ticks returned by the
spinning wind meter. These values are used as shown in the for-
mula on page 126.

void wind_get_windmeter(float *multiplier, float *addend)
Returns the current values for the multiplier and addend.

void wind_set_wm_string(char *string)
This function looks up the wind meter named in “string” in the
WIND.TXT file, and automatically sets the addend and multiplier
based on those values.

char *wind_get_wm_name(void)
This looks for a wind meter in WIND.TXT that matches current
parameters (addend and multiplier), and returns that name if it
exists. It returns “CUSTOM” if no such wind meter is found.

128 CERL TR 99/99

float wind_speed(void)
This returns the current wind speed, in miles per hour. It uses the
conversions set in the formula on page 126.

float wind_ticks_to_mph(int ticks)
This converts ticks per sample interval into miles per hour, and re-
turns the result.

int wind_mph_to_ticks(float speed)
This calculates the number of ticks per sample interval resulting
from the given wind speed, then rounds off the result to the near-
est integer and returns it.

clock_t clock(void)
Returns the number of 55-ms clock ticks since the wind meter code
was initialized. (This is a working version of the clock() function
implemented by Borland C++.)

void wind_suspend(void)
This temporarily disables the wind meter IRQ, disabling collection
of wind data. (Any attempts to determine wind speed when the
wind meter is disabled will result in an output of 0 mph/0 ticks.)

void wind_enable(void)
This function reenables the wind meter IRQ, allowing the wind
meter to work normally.

Internal functions:

void interrupt wind_timer_int(…)
This is the timer interrupt handler. It keeps track of all of the
timing issues involved in the wind meter, setting or clearing the
windy flag as warranted by the set timeout, threshold, and sample
interval. It also maintains a count of the number of clock ticks
since the wind meter was initialized, which is used for timing in
other parts of the code. After it does all of its work, it calls the
original timer interrupt vector to ensure proper operation of the
DOS clock.

void wind_blip(void)
This function simply adds one to the count of the number of wind
meter ticks seen. It is called by the watchdog interrupt code.

CERL TR 99/99 129

Field Unit Boot Code

CONFIG.SYS
[menu]
menuitem=monitor,Standard Noise Monitor operation
menuitem=dos,DOS Prompt for System Maintenance
menuitem=reflash,Automatic Reflash (Put image floppy in disk drive)
menuitem=killrom,Reset code and setup to ROM defaults
menudefault=monitor,3

[common]
device=dos\himem.sys
device=dos\pcfsrdvr.sys
device=dos\ramdrive.sys 2048 /e
dos=high
stacks=9,512

[monitor]
[dos]
[reflash]
[killrom]

AUTOEXEC.BAT
path c:\;c:\data;a:\;a:\dos
set dsp_path=a:
set temp=d:\
mkdir c:\data
if exist c:\startup.bat call c:\startup.bat
if %config%==monitor monitor %dsp_path%
if %config%==reflash reflash
if %config%==killrom killrom

MONITOR.BAT
:start
if exist c:\main.exe c:\main %dsp_path%\mondsp_1.out %dsp_path%\mondsp_2.out
if not exist c:\main.exe main %dsp_path%\mondsp_1.out %dsp_path%\mondsp_2.out
if errorlevel 102 goto com2
if errorlevel 101 goto com1
if errorlevel 1 goto romver
goto end
:romver
a:\main.exe a:\mondsp_1.out a:\mondsp_2.out
if errorlevel 102 goto com2
if errorlevel 101 goto com1
:error
Echo Noise monitor failed startup!
goto end
:com1
wdmtsr 1
goto kermit
:com2
wdmtsr 2
goto kermit
:kermit
kerlite
goto end
:end
reboot

130 CERL TR 99/99

Appendix D1: MON7_2 code (CPU_B) Blast
Detection Algorithm

1 ***
2 * *
3 * *
4 * Date : 11 JUL 96 *
5 * Title : MON7_2.ASM *
6 * *
7 * MON7_2 receives sampled data from C40 communication link 3&4. *
8 * The output word is then transmitted back along comm port 3. *
9 * *

10 * This program is part of the prototype monitor program and *
11 * must be loaded on the second processor module. MON7_1 must *
12 * be loaded on the first module. *
13 **
14 .sect “chahist” ;channel a history storage area, length=128 at 0x00300000
15
16 CHA .space 128
17
18
19 .sect “chbhist” ;channel b history storage area at 0x003000400
20
21 CHB .space 128
22
23
24 .sect “ehist” ;energy history storage area, length=690 at 0x00300800
25
26 EH .space 690
27
28
29 .data
30
31 STACK .word 002ffc00H ; Define stack space
32 IVECTAB .word 00308000H ; Interrupt vector table
33 CHAHIST .word CHA
34 CHBHIST .word CHB
35 ENHIST .word EH
36
37 COMM_PORT3_CTL .word 00100070h ;Port 3 control
38 COMM_PORT3_OTP .word 00100072h ; output
39 COMM_PORT3_INP .word 00100071h ; input (for channel a data)
40 COMM_PORT4_CTL .word 00100080h ;Port 4 control
41 COMM_PORT4_OTP .word 00100082h ; output
42 COMM_PORT4_INP .word 00100081h ; input (for channel b data)
43
44 .global MAIN ;assign global variables
45 .global CUREF
46 .global CHAF3R
47 .global CHAF3I
48 .global CHAF2R
49 .global CHAF2I
50 .global CHBF3R
51 .global CHBF3I
52 .global CHBF2R
53 .global CHBF2I
54 .global MCHAF2
55 .global MCHAF3
56 .global MCHBF2
57 .global MCHBF3
58 .global ZC

CERL TR 99/99 131

59 .global XC
60 .global ACA
61 .global ACB
62 .global DETFUN
63 .global NEWSA
64 .global NEWSB
65 .global NEWCHA
66 .global NEWCHB
67 .global OLDCHAX
68 .global OLDCHBX
69 .global ICRDY3
70 .global READYA
71 .global READYB
72 .global DFCHK
73 .global DCHK
74 .global STAGE1
75 .global OUTSTAGE
76 .global NOOUT
77 .global DECAYOUT
78 .global fpinv
79 .global GET_DATA
80 .global BACKLOG
81 .global TEST
82 .global TEST3
83 .global TEST4
84 .global BEGN_ALGR
85 .global ENABLE
86
87 COS3 .set 0.99518 ;cos(2*pi*126/128)
88 SIN3 .set -0.09802 ;sin(2*pi*126/128)
89 COS2 .set 0.99880 ;cos(2*pi*127/128)
90 SIN2 .set -0.049068 ;sin(2*pi*126/128)
91 NN .SET 0.1
92 NNN .set 0.01
93 CONST .SET 5.12
94 CONST2 .SET 100.0
95 ZCTHR .SET 0.49 ;square of the correlation ratio threshold
96 ALPHA .set 0.99999
97 ALPHAN .set 0.998721 ;alpha^128
98 CUREF .float 0.0 ;current energy function value
99 DETFUN .float 0.0 ;DETERMINATION FUNCTION CALC FROM EF
100 CHAF3R .float 0.0 ;real part of third point of fft chA
101 CHAF3I .float 0.0 ;imaginary part of third point of fft chA
102 CHAF2R .float 0.0
103 CHAF2I .float 0.0
104 CHBF3R .float 0.0
105 CHBF3I .float 0.0
106 CHBF2R .float 0.0
107 CHBF2I .float 0.0
108 MCHAF3 .float 0.0 ;CHAF3R^2+CHAF3I^2 , “magnitude squared”
109 MCHAF2 .float 0.0
110 MCHBF3 .float 0.0
111 MCHBF2 .float 0.0
112 OLDCHA .float 0.0 ;XA(n-N)
113 OLDCHB .float 0.0 ;XB(n-N)
114 NEWSA .word 0 ;new integer sample from port ch A
115 NEWSB .word 0 ;new integer sample from port ch B
116 NEWCHA .float 0.0 ;XA(n) floating point
117 NEWCHB .float 0.0 ;XB(n) floating point
118 OLDCHAX .float 0.0
119 OLDCHBX .float 0.0
120 ZC .float 0.0 ;PREVIOUS zeroth lag cross-correlation value
121 ACA .float 0.0 ;AUTOCORR OF CHA
122 ACB .float 0.0 ;AUTOCORR OF CHB
123 OLDEF .float 0.0 ;oldest value of ef
124 CSAMP .WORD 0 ;SAVE CURRENT SAMPLE
125 XC .float 0.0 ;CROSSCORRELATION VALUE
126 OUTCHA .float 0.0 ;CHA OUTPUT
127 READYA .WORD 0 ;new cha input sample ready
128 READYB .word 0 ;new chb input sample ready
129
130
131 IIEMASK .word 44000h ;Interrupt enable mask - for ICRDY3 and ICRDY4

132 CERL TR 99/99

132
133
134 .text
135 ; Define the interrupt vector table...
136 BR MAIN ; Reset vector
137 .word 0h ; NMI
138 .word 0H ; TINT0
139 .word 0H ; INT0
140 .word 0H ; INT1
141 .word 0H ; INT2
142 .word 0H ; INT3
143
144 .space 18 ; Reserved space and unused port 0 and
145 ; 1 interrupts.
146 .word 0h ; Input channel full, port 3
147 .word ICRDY3 ; ICRDY3
148 .word 0h ; OCRDY3
149 .word 0h ; Output channel empty, port 3
150
151 .word 0h ; Input channel full, port 4
152 .word ICRDY4 ; ICRDY4
153 .word 0h ; OCRDY4
154 .word 0h ; Output channel empty, port 4
155
156 ; Start of program proper...
157
158 MAIN: LDP @STACK,DP ; Initialize the stack
159 LDI @STACK,SP
160
161 LDI @IVECTAB,R0 ; Set up the interrupt vector table
162 LDPE R0,IVTP
163
164
165 ***
166 * Setup comm_ports and zero the input FIFOs *
167 ***
168
169 LDA @COMM_PORT3_INP, AR0 ; Input FIFO addr channel a data
170 LDA @COMM_PORT4_INP, AR1 ; Input FIFO addr channel b data
171 LDA @COMM_PORT3_OTP, AR2 ; output FIFO addr recogn. data to proc 1
172
173 LDA @COMM_PORT3_CTL, AR5 ; control registers
174 LDA @COMM_PORT4_CTL, AR6
175
176 LDI *AR5,R8 ; get control register3
177 LDI *AR6,R9 ; get control register4
178 OR 00000008h,R8 ; change bit3 to 1 to halt input FIFO3
179 OR 00000008h,R9 ; change bit3 to 1 to halt input FIFO4
180 STI R8,*AR5 ; write change to control register3
181 STI R9,*AR6 ; write change to control register4
182
183
184 TEST3 LBU1 *AR6,R8 ; load byte 1 of comm_port3 control reg.
185 LSH 4,R8 ; shift left by 4 bits
186 LBU0 R8,R8 ; load only 1st byte
187 LSH -4,R8 ; right shift by 4 bits
188 ; R8=number of words in INPUT FIFO3
189 LDI 0,R9
190 CMPI R8,R9
191 BZ TEST4 ; go on and test FIFO4 , FIFO3 is empty
192 SUBI 1,R8 ; compute # words-1
193 RPTS R8 ; repeat next instruction (#words in FIFO-1) times
194 LDI *AR0,R10 ; load FIFO values to clear
195
196
197 TEST4 LBU1 *AR5,R8 ; load byte 1 of comm_port3 control reg.
198 LSH 4,R8 ; shift left by 4 bits
199 LBU0 R8,R8 ; load only byte0
200 LSH -4,R8 ; right shift by 4 bits
201 ; R8=number of words in INPUT FIFO3
202 LDI 0,R9
203 CMPI R8,R9
204 BZ ENABLE ; go on and enable interrupts, FIFO’s are empty

CERL TR 99/99 133

205 SUBI 1,R8 ; compute # words-1
206 RPTS R8 ; repeat the next instruction (#words-1) times
207 LDI *AR1,R10 ; load FIFO values to clear
208
209
210 ENABLE OR @IIEMASK, IIE ; Enable ICRDY3 and ICRDY4 interrupts only
211 OR 2000h, ST ; CPU global int
212
213 LDI *AR5,R8 ; get control register3
214 LDI *AR6,R9 ; get control register4
215 XOR 00000008h,R8 ; change bit3 to 1 to unhalt input FIFO3
216 XOR 00000008h,R9 ; change bit3 to 1 to unhalt input FIFO4
217 STI R8,*AR5 ; write change to control register3
218 STI R9,*AR6 ; write change to control register4
219
220 LDI @CHAHIST,AR3 ;set pointer to chA data
221 LDI @CHBHIST,AR4 ;set pointer to chb data
222 LDI @ENHIST,AR5 ;set pointer to energy history
223
224 **
225 ** INIT COMPLETE *
226 **
227
228
229 LOOP: LDI @READYA,R0 ; Wait for new samples to be available
230 LDI @READYB,R1
231 ADDI R0,R1 ; check to see if both ready flags are set
232 LDI 2,R0
233 CMPI R0,R1
234 BZ BEGN_ALGR ; go on to algorithm if both channels are ready
235 BR LOOP ; if data isn’t ready then wait some more...
236
237 ***
238 * BEGINNING OF THE ALGORITHM *
239 ***
240
241 BEGN_ALGR STI 0,@READYA ;reset ready flags and go on to main algorithm
242 STI 0,@READYB
243
244 LDI @NEWSA,R0 ; load new channel a data
245 LDI @NEWSB,R1 ; load new channel b data
246 NOP
247 STI R0,@CSAMP ;STORE CURRENT INT SAMPLE
248 FLOAT R0,R0 ;convert to floating point
249 FLOAT R1,R1 ;convert to floating point
250 NOP
251 LDF 1.0,R4
252 MPYF R4,R0 ;
253 MPYF R4,R1 ;
254
255 RND R0,R0
256 RND R1,R1
257
258 STF R0,@OUTCHA ;STORE CURRENT SAMPLE FOR POSS OUTPUT
259
260 MPYF NNN,R0
261 MPYF NNN,R0
262 MPYF NNN,R1
263 MPYF NNN,R1 ;bring sample values down in this area if needed
264
265 LDI AR3,AR6
266 LDI AR4,AR7
267 LDI 128,BK ;load size of circular buffers
268 LDI 64,IR1 ;LOAD OFFSET FOR XCORR OLD VALUE
269 LDF *AR6++(IR1)%,R2 ;get cha x(n-N) AND INCREMENT POINTER
270 LDF *AR7++(IR1)%,R3 ;get chb x(n-N) AND INCREMENT POINTER
271 LDF *AR6,R4 ;get cha old value for xcorr
272 LDF *AR7,R5 ;get chb old value for xcorr
273
274 RND R4,R4 ;round all sample values
275 RND R5,R5
276 RND R2,R2
277 RND R3,R3

134 CERL TR 99/99

278 RND R0,R0
279 RND R1,R1
280
281 STF R4,@OLDCHAX ;STORE OLD VALUE FOR XCORR
282 STF R5,@OLDCHBX ;STORE OLD VALUE FOR XCORR
283 STF R2,@OLDCHA ;store cha x(n-N) in variable
284 STF R3,@OLDCHB ;store chb x(n-N) in variable
285 STF R0,@NEWCHA ;STORE NEWEST CHA SAMPLE
286 STF R1,@NEWCHB ;STORE NEWEST CHB SAMPLE
287 STF R0,*AR3++% ;store current cha sample in circ. buff.
288 || STF R1,*AR4++% ;store current chb sample in circ. buff.
289

290 ***
291 *** start to compute chA frequencies ***
292 *** calculate FIRST frequency for channel A ***
293 ***
294
295 MPYF ALPHAN,R2 ;R2=(alpha^128)*x(n-N)
296 SUBF3 R2,R0,R5 ;R5=x(n)-(alpha^128)*x(n-N)
297 LDF @CHAF3R,R4 ;R4=CHAF3R
298 LDF @CHAF3I,R6 ;R6=CHAF3I
299 MPYF COS3,R4 ;R4=CHAF3R*COS(2*PI*126/128)
300 MPYF SIN3,R6 ;R6=CHAF3I*SIN(2*PI*126/128)
301 ADDF R6,R4 ;R4=CHAF3R*COS+CHAF3I*SIN
302 MPYF ALPHA,R4 ;R4=ALPHA*(CHAF3R*COS+CHAF3I*SIN)
303 ADDF R5,R4 ;R4= THE NEW CHAF3R
30
305 ** calculate the imaginary part ***
306
307 LDF @CHAF3R,R2 ;R2=CHAF3R
308 LDF @CHAF3I,R3 ;R3=CHAF3I
309 MPYF COS3,R3 ;R3=CHAF3I*COS(2*PI*126/128)
310 MPYF SIN3,R2 ;R2=CHAF3R*SIN(2*PI*126/128)
311 SUBF3 R2,R3,R2 ;R2=CHAF3R*SIN+CHAF3I*COS
312 MPYF ALPHA,R2 ;R2=ALPHA*(CHAF3R*SIN+CHAF3I*COS)
313
314 RND R4,R4
315 RND R2,R2
316 STF R4,@CHAF3R ;STORE NEW CHAF3R
317 STF R2,@CHAF3I ;STORE NEW CHAF3I
318
319 *** calculate SECOND frequency for channel A ***
320
321 LDF @CHAF2R,R4 ;R4=CHAF2R
322 LDF @CHAF2I,R6 ;R6=CHAF2I
323 MPYF COS2,R4 ;R4=CHAF2R*COS(2*PI*127/128)
324 MPYF SIN2,R6 ;R6=CHAF2I*SIN(2*PI*127/128)
325 ADDF R6,R4 ;R4=CHAF2R*COS+CHAF2I*SIN
326 MPYF ALPHA,R4 ;R4=ALPHA*(CHAF2R*COS+CHAF2I*SIN)
327 ADDF R5,R4 ;R4= THE NEW CHAF2R
328
329 ** calculate the imaginary part ***
330
331 LDF @CHAF2R,R2 ;R2=CHAF2R
332 LDF @CHAF2I,R3 ;R3=CHAF2I
333 MPYF COS2,R3 ;R3=CHAF2I*COS(2*PI*127/128)
334 MPYF SIN2,R2 ;R2=CHAF2R*SIN(2*PI*127/128)
335 SUBF3 R2,R3,R2 ;R2=CHAF2R*SIN+CHAF2I*COS
336 MPYF ALPHA,R2 ;R2=ALPHA*(CHAF2R*SIN+CHAF2I*COS)
337
338 RND R4,R4
339 RND R2,R2
340 STF R4,@CHAF2R ;STORE NEW CH1F2R
341 STF R2,@CHAF2I ;STORE NEW CH1F2I
342
343
344 ***
345 *** start to compute chB frequencies ***
346 *** calculate FIRST frequency for channel B ***

CERL TR 99/99 135

347 ***
348
349 LDF @OLDCHB,R2 ;GET x(n-N) for chB
350 MPYF ALPHAN,R2 ;R2=(alpha^256)*x(n-N)
351 SUBF3 R2,R1,R5 ;R5=x(n)-(alpha^256)*x(n-N)
352 LDF @CHBF3R,R4 ;R4=CHBF3R
353 LDF @CHBF3I,R6 ;R6=CHBF3I
354 MPYF COS3,R4 ;R4=CHBF3R*COS(2*PI*126/128)
355 MPYF SIN3,R6 ;R6=CHBF3I*SIN(2*PI*126/128)
356 ADDF R6,R4 ;R4=CHBF3R*COS+CHBF3I*SIN
357 MPYF ALPHA,R4 ;R4=ALPHA*(CHBF3R*COS+CHBF3I*SIN)
358 ADDF R5,R4 ;R4= THE NEW CHBF3R
359
360 ** calculate the imaginary part ***
361
362 LDF @CHBF3R,R2 ;R2=CHBF3R
363 LDF @CHBF3I,R3 ;R3=CHBF3I
364 MPYF COS3,R3 ;R3=CHBF3I*COS(2*PI*126/128)
365 MPYF SIN3,R2 ;R2=CHBF3R*SIN(2*PI*126/128)
366 SUBF3 R2,R3,R2 ;R2=CHBF3R*SIN+CHBF3I*COS
367 MPYF ALPHA,R2 ;R2=ALPHA*(CHBF3R*SIN+CHBF3I*COS)
368
369 RND R4,R4
370 RND R2,R2
371 STF R4,@CHBF3R ;STORE NEW CHBF3R
372 STF R2,@CHBF3I ;STORE NEW CHBF3I
373
374 *** calculate SECOND frequency for channel B ***
375
376 LDF @CHBF2R,R4 ;R4=CHBF2R
377 LDF @CHBF2I,R6 ;R6=CHBF2I
378 MPYF COS2,R4 ;R4=CHBF2R*COS(2*PI*127/128)
379 MPYF SIN2,R6 ;R6=CHBF2I*SIN(2*PI*127/128)
380 ADDF R6,R4 ;R4=CHBF2R*COS+CHBF2I*SIN
381 MPYF ALPHA,R4 ;R4=ALPHA*(CHBF2R*COS+CHBF2I*SIN)
382 ADDF R5,R4 ;R4= THE NEW CHBF2R
383
384 ** calculate the imaginary part ***
385
386 LDF @CHBF2R,R2 ;R2=CHBF2R
387 LDF @CHBF2I,R3 ;R3=CHBF2I
388 MPYF COS2,R3 ;R3=CHBF2I*COS(2*PI*127/128)
389 MPYF SIN2,R2 ;R2=CHBF2R*SIN(2*PI*127/128)
390 SUBF3 R2,R3,R2 ;R2=CH1F2R*SIN+CHBF2I*COS
391 MPYF ALPHA,R2 ;R2=ALPHA*(CHBF2R*SIN+CHBF2I*COS)
392
393 RND R4,R4
394 RND R2,R2
395 STF R4,@CHBF2R ;STORE NEW CHBF2R
396 STF R2,@CHBF2I ;STORE NEW CHBF2I
397
398
399
400 ***
401 *** calculate the square of the magnitudes of the frequencies ***
402 ***
403
404 MPYF R4,R4 ;CHBF2R^2
405 MPYF R2,R2 ;CHBF2I^2
406 ADDF R4,R2 ;CHBF2R^2+CHBF2I^2
407 LDF @CHBF3R,R4 ;GET CHBF3R
408 ABSF R2,R2
409 STF R2,@MCHBF2 ;STORE MCHBF2
410 MPYF R4,R4 ;CHBF3R^2
411 LDF @CHBF3I,R2 ;GET CHBF3I
412 MPYF R2,R2 ;CHBF3I^2
413 ADDF R4,R2 ;CHBF3R^2+CHBF3I^2
414 LDF @CHAF3R,R4 ;GET CHAF3R
415 ABSF R2,R2 ;ABS. VALUE OF MCHBF3
416 STF R2,@MCHBF3 ;STORE MCHBF3
417 MPYF R4,R4 ;CHAF3R^2
418 LDF @CHAF3I,R2 ;GET CHAF3I
419 MPYF R2,R2 ;CHAF3I^2

136 CERL TR 99/99

420 ADDF R4,R2 ;CHAF3R^2+CHAF3I^2
421 LDF @CHAF2R,R4 ;GET CHAF2R
422 ABSF R2,R2 ;ABS. VALUE OF MCHAF3
423 STF R2,@MCHAF3 ;STORE MCHAF3
424 MPYF R4,R4 ;CHAF2R^2
425 LDF @CHAF2I,R2 ;GET CHAF2I
426 MPYF R2,R2 ;CHAF2I^2
427 ADDF R4,R2 ;CHAF2R^2+CHAF2I^2
428 ABSF R2,R2 ;ABS. VALUE OF MCHAF2
429 STF R2,@MCHAF2 ;STORE MCHAF2
430
431
432 ***
433 *** calculate energy function ***
434 ***
435
436 LDF @MCHBF2,R3 ;GET MCHBF2
437 LDF @MCHAF3,R4 ;GET MCHAF3
438 MPYF R3,R2 ;R2=MCHAF2*MCHBF2
439 LDF @MCHBF3,R3 ;GET MCHBF3
440 MPYF R4,R3 ;R3=MCHAF3*MCHBF3
441 ADDF R3,R2 ;R2=MCHAF3*MCHBF3+MCHAF2*MCHBF2
442 RND R2,R2 ;ROUND BEFORE STORING
443 STF R2,@CUREF ;STORE CURRENT ENERGY FUNCTION
444
445 ***
446 *** FIND MAX FROM OLDEST EF TO NEWEST-70 ***
447 ***
448
449 LDI 690,BK ;load block size
450 LDI AR5,AR6 ;TRANSFER TO A DUMMY POINTER
451 LDF 0.0,R3 ;INITIALIZE VARIABLE
452 LDI 619,RC ;REPEAT BLOCK 620 TIMES
453 RPTB ENDLOOP
454 LDF *AR6++%,R2 ;GET EF VALUE
455 CMPF R3,R2 ;IF JUST LOADED EF < MAX FOUND SO FAR THEN GOTO END
456 BN ENDLOOP
457 LDF R2,R3 ;A NEW MAX FOUND, STORE IT
458 ENDLOOP NOP
459 LDF R3,R0 ;LOAD MAX INTO R0 TO FACILITATE INVERSE CALC.
460 CALL fpinv ;CALCULATE 1/MAX
461 LDF @CUREF,R2 ;GET CURRENT EF VALUE
462 MPYF R2,R0 ;CUREF/MAX
463 STF R0,@DETFUN ;STORE VALUE
464 STF R2,*AR5++% ;STORE CURRENT ENERGY FUCNTION IN HISTORY
465
466
467 **************************************
468 *** calculate zero lag correlation ***
469 **************************************
470
471 *** calculate autocorrelation of chA ***
472
473 LDF @OLDCHAX,R2 ;GET X(n-N) OF CHA
474 RND R2,R2
475 MPYF R2,R2 ;R2=CHA(n-N)^2
476 ABSF R2,R2 ;TAKE ABS.
477 LDF @NEWCHA,R3 ;GET X(n) OF CHA
478 RND R3,R3
479 MPYF R3,R3 ;R3=CHA(n)^2
480 ABSF R3,R3 ;TAKE ABS.
481 LDF @ACA,R4 ;GET PREVIOUS AUTOCORR OF CHA
482 RND R4,R4
483 ADDF R3,R4 ;ADD NEW UPDATE TO PREVIOUS
484 SUBF R2,R4 ;SUB OLD OUT
485 ABSF R4,R4 ;TAKE ABS VALUE
486 RND R4,R4
487 STF R4,@ACA ;STORE NEW AUTOCORR OF CHA
488
489 *** calculate autocorrelation of chB ***
490
491 LDF @OLDCHBX,R2 ;GET X(n-N) OF CHB
492 RND R2,R2

CERL TR 99/99 137

493 MPYF R2,R2 ;R2=CHA(n-N)^2
494 ABSF R2,R2 ;TAKE ABS.
495 LDF @NEWCHB,R3 ;GET X(n) OF CHB
496 RND R3,R3
497 MPYF R3,R3 ;R3=CHA(n)^2
498 ABSF R3,R3 ;TAKE ABS.
499 LDF @ACB,R4 ;GET PREVIOUS AUTOCORR OF CHB
500 RND R4,R4
501 ADDF R3,R4 ;ADD NEW UPDATE TO PREVIOUS
502 SUBF R2,R4 ;SUB OLD OUT
503 ABSF R4,R4 ;TAKE ABS VALUE
504 RND R4,R4
505 STF R4,@ACB ;STORE NEW AUTOCORR OF CHB
506
507
508 *** calculate cross-correlation of chA and chB ***
509
510 LDF @OLDCHAX,R2 ;GET X(n-N) OF CHA
511 RND R2,R2
512 LDF @OLDCHBX,R3 ;GET X(n-N) OF CHB
513 RND R3,R3
514 MPYF3 R2,R3,R4 ;R4=CHA(n-N)*CHB(n-N)
515 LDF @NEWCHA,R2 ;GET X(n) OF CHA
516 RND R2,R2
517 LDF @NEWCHB,R3 ;GET X(n) OF CHB
518 RND R3,R3
519 MPYF R2,R3 ;R3=CHA(n)*CHB(n)
520 LDF @XC,R2 ;GET PREVIOUS X-CORR
521 RND R2,R2
522 ADDF R3,R2 ;ADD IN UPDATE
523 SUBF R4,R2 ;SUB OUT OLD
524 RND R2,R2
525 STF R2,@XC ;STORE NEW X-CORR
526
527 ABSF R2,R2
528 MPYF3 R2,R2,R6 ;R6=XCORR^2
529 LDF @ACA,R2 ;GET AUTOCORR CHA
530 RND R2,R2
531 LDF @ACB,R3 ;GET AUTOCORR CHB
532 RND R3,R3
533 MPYF3 R2,R3,R0 ;R0=ACA*ACB
534 CALL fpinv ;COMPUTE 1/R0
535 MPYF R6,R0 ;R0=XCORR^2/(AUTOCORRA*AUTOCORRB)
536 RND R0,R0
537 STF R0,@ZC ;STORE NEW ZERO-LAG X-CORR
538
539 **
540 * END OF THE ALGORITHM *
541 **
542
543 *************************
544 *** DECISION SECTION ****
545 *************************
546
547 *** COMPARE CURRENT DETERMINATION FUNCTION TO THRESHOLD ***
548
549 DFCHK LDF @DETFUN,R1 ;GET CURRENT DETFUN (decision ratio) VALUE
550 LDF 25,R2 ;R2=25.0
551 CMPF R1,R2 ;COMPARE detfun to 25
552 BN STAGE1 ;GO TO STAGE1 IF DETFUN>25
553 BZ STAGE1 ;GO TO STAGE1 IF DETFUN=25
554 BR NOOUT ;Go to no output stage if <25
555
556 *** STAGE1: AT THIS STAGE DETFUN>=25, NOW CHECK CORRELATION ***
557
558 STAGE1 NOP
559 LDF @ZC,R0 ;GET ZEROTH LAG CORRELATION VALUE
560 LDF ZCTHR,R1 ;GET CORRELATION THRESHOLD
561 CMPF R0,R1 ;COMPARE
562 BN OUTSTAGE ;IF ZC>ZCTHR THEN GOTO OUTSTAGE
563 BR NOOUT ;GO TO NO output stage if ZC<ZCTHR
564
565 *** OUTSTAGE: THERE IS A BLAST, NOW OUTPUT THE CURRENT SAMPLE ***

138 CERL TR 99/99

566
567 OUTSTAGE NOP
568 LDI 1,R2 ;output a 1 because there’s a blast
569 STI R2,*AR2 ;write 1 to comm port 3 output to processor A
570 BR LOOP ;go back and wait for next set of data points
571
572 *** NOOUT: THERE IS NO BLAST AND DECAY WAS NOT ACTIVE, OUTPUT 0 ***
573
574 NOOUT LDI 0,R0
575 STI R0,*AR2 ;OUTPUT 0 TO processor 1 over comm port 3
576 BR LOOP ;go back and wait for next set of data points
577
578
579 ***
580 *** subroutine Inverse of a floating point number ***
581 *** on page 11-29 in TI C30 User’s Guide ***
582 *** INPUT AND OUTPUT IS IN R0 ***
583 *** USES R0,R1,R2,R3 ***
584 ***
585
586 fpinv: LDF R0,R3
587 ABSF R0
588
589 PUSHF R0
590 POP R1
591 ASH -24,R1
592
593 NEGI R1
594 SUBI 1,R1
595 ASH 24,R1
596 PUSH R1
597 POPF R1
598
599 MPYF R1,R0,R2
600 SUBRF 2.0,R2
601 MPYF R2,R1
602
603 MPYF R1,R0,R2
604 SUBRF 2.0,R2
605 MPYF R2,R1
606
607 MPYF R1,R0,R2
608 SUBRF 2.0,R2
609 MPYF R2,R1
610
611 MPYF R1,R0,R2
612 SUBRF 2.0,R2
613 MPYF R2,R1
614
615 RND R1
616
617 MPYF R1,R0,R2
618 SUBRF 1.0,R2
619 MPYF R1,R2
620 ADDF R2,R1
621
622 RND R1,R0
623
624 NEGF R0,R2
625 LDF R3,R3
626 LDFN R2,R0
627
628 RETS
629 ************************************
630 *** END OF SUBROUTINE FPINV ***
631 ************************************
632
633 ***
634 * Interrupt service routine for reading port3 (get cha data) *
635 ***
636
637 ICRDY3: LDI *AR0,R10 ; read new cha sample
638 STI R10,@NEWSA ; store it

CERL TR 99/99 139

639 STI 1,@READYA ; set ready flag
640 RETI
641
642 ***
643 * Interrupt service routine for reading port4 (get chb data) *
644 ***
645
646 ICRDY4: LDI *AR1,R11 ; read new chb sample
647 STI R11,@NEWSB ; store it
648 STI 1,@READYB ; set ready flag
649 RETI
650
651 ***
652 * END OF PROGRMAM *
653 ***
654
655
656 .end

140 CERL TR 99/99

Appendix D2: MON7_1 code (CPU_A)
Noise Monitor Computations

1 **
2 * *
3 * *
4 * Date : 11 SEP 1996 *
5 * Title : MON7_1.ASM *
6 * *
7 * MON7_1 initializes the AM/D16DS daughter module to sample *
8 * at 48KHz, and passes the samples to the second C40 processor. *
9 * Decimation for processor B is done here. *
10 * *
11 * For C-filter: *
12 * Biquad0=0.44519794+0.89039588*(Z^-1)+0.44519794*(Z^-2) *
13 * ___ *
14 * 1-0.2231468*(Z^-1)+0.00012448623*(Z^-2) *
15 * *
16 * Biquad1=0.44519794-0.89039588*(Z^-1)+0.44519794*(z^-2) *
17 * __ *
18 * 1-1.9946068*(Z^-1)+0.99461403*(Z^-2) *
19 * *
20 * with gain factor correction of 1.3101327 *
21 * MON7_1 is part of the two processor noise monitor prototype *
22 * and should be loaded on the primary processor module. MON7_2 *
23 * has to be loaded on the secondary processor module, and *
24 * contains the blast recognition code. This revision differs *
25 * from mon6_1 in that this code uses cross multiplication *
26 * in the measurement of the signal to improve the accuracy in *
27 * the presence of wind. *
28 * *
29 **
30
31
32 .data
33 C_C .float -0.00012448623 ; a2 for biquad 0
34 .float 0.44519794 ; b2 for “
35 .float 0.2231468 ; a1 for “
36 .float 0.89039588 ; b1 for “
37 .float 0.44519794 ; b0 for “
38
39 .float -0.99461403 ; a2 for biquad 1
40 .float 0.44519794 ; b2 for “
41 .float 1.9946068 ; a1 for “
42 .float -0.89039588 ; b1 for “
43 .float 0.44519794 ; b0 for “
44
45 .space 2 ; spacer in order to start
46 ; delays on address which is Mult of 4
47
48
49 .float 0.0 ; 3 locations for biquad 0 delays cha
50 .float 0.0
51 C_DA .float 0.0
52
53 .space 1 ; once again a spacer to keep data in right place
54
55 .float 0.0 ; 3 locations for biquad 1 delays cha
56 .float 0.0
57 .float 0.0
58

CERL TR 99/99 141

59 .space 1
60
61 .float 0.0 ; 3 locations for biquad 0 delays chb
62 .float 0.0 ;
63 C_DB .float 0.0
64
65 .space 1
66
67 .float 0.0 ; 3 locations for biquad 1 delays chb
68 .float 0.0
69 .float 0.0
70
71 ; note that a2 and a1 here are the
72 ; negative of the a2 and a1 given
73 ; by MATLAB in its filter design
74 ; due to a difference in a definition
75
76
77 STACK .word 002ffc00H ; Define stack space
78 DATA_P .word 00300000H ; define data page pointer location
79 IACKLOC .word 80000000H ; Interrupt acknowledge location
80 IVECTAB .word 00308000H ; Interrupt vector table
81 CHANA .word 90000002H ; Channel A address
82 CHANB .word 90000006H ; Channel B address
83 UCR .word 90000008H ; User control register address
84 ACR .word 9000000aH ; Analog control register address
85 IMR .word 9000000bH ; Analog interrupt mask register addr
86 CONFIG .word 9000000fH ; Configuration register address
87 COMM_PORT0_CTL .word 00100040h ; Port 0 control
88 COMM_PORT0_OTP .word 00100042h ; output
89 COMM_PORT0_INP .word 00100041h ; input
90 COMM_PORT1_CTL .word 00100050h ; Configuration register address
91 COMM_PORT1_INP .word 00100051h ; input
92 COMM_PORT1_OTP .word 00100052h ; output
93 DPRAM_ADDR .word 0a0000000h ; start address of dual port ram
94 CURRENT_ADDR .word 0a0000400h ; address of spot where current circ buff address
95 ; for current TSB is stored
96 FIRST_TIME .word 1h ; set first time flag to one
97 DEC_COUNT .word 0h ; decimation counter
98 CHA_C .float 0 ; current C-filtered data cha
99 CHB_C .float 0 ; current C-filtered data chb
100 C_COEFF .word C_C ; address of C filter coeff.
101 C_DELAYA .word C_DA ; address of C filter delays for ch a
102 C_DELAYB .word C_DB ; address of C filter delays for ch b
103 GAIN_CON .float 1.3101327 ; c-filter gain correction constant
104
105 MICRO_BLK_CNT .word 0 ; counter for micro blocks (0-199)
106
107 SQA_MICRO_BLK .float 0 ; sum of squares for current micro block, cha
108 SQAC_MICRO_BLK .float 0 ; “ “ “ “ “ “ “ , cha c-wght
109 SQB_MICRO_BLK .float 0 ; “ “ “ “ “ “ “ , chb
110 SQBC_MICRO_BLK .float 0 ; “ “ “ “ “ “ “ , chb c-wght
111 SQAB_MICRO_BLK .float 0 ; “ “ “ “ “ “ “ , cha*chb
112 SQABC_MICRO_BLK .float 0 ; “ “ “ “ “ “ “ , cha*chb c-wght
113
114 MICRO_MAX_A .float 0 ; current max val for current micro block, cha
115 MICRO_MAX_AC .float 0 ; “ “ “ “ “ “ “ , cha c-wght
116 MICRO_MAX_B .float 0 ; “ “ “ “ “ “ “ , chb
117 MICRO_MAX_BC .float 0 ; “ “ “ “ “ “ “ , chb c-wght
118 MICRO_MAX_AB .float 0 ; “ “squared val for current m_blk, cha*chb
119 MICRO_MAX_ABC .float 0 ; “ “ “ “ “ “ “ , cha*chb c-wght
120
121 SEND_DATA_ADDR .word 00300400h ; address that corresponds to SQA_TSB
122 CHA_INTEGER .word 0
123 CHB_INTEGER .word 0
124 BLR_FLAG .word 0 ; current blr flag
125
126 .sect “to_send”
127
128 **
129 * This is data that is sent to the PC via DPRAM *
130 * the order here is important as indirect addressing is used to *
131 * get the data before writing to the DPRAM *

142 CERL TR 99/99

132 **
133
134 SQA_TSB .float 0 ; sum of squares for current tenth sec blk, cha
135 SQAC_TSB .float 0 ; “ “ “ “ “ “ “ “ , cha c-wght
136 SQB_TSB .float 0 ; “ “ “ “ “ “ “ “ , chb
137 SQBC_TSB .float 0 ; “ “ “ “ “ “ “ “ , chb c-wght
138
139 TSB_MAX_A .float 0 ; current max val for current tenth sec blk, cha
140 TSB_MAX_AC .float 0 ; “ “ “ “ “ “ “ “ , cha c-wght
141 TSB_MAX_B .float 0 ; “ “ “ “ “ “ “ “ , chb
142 TSB_MAX_BC .float 0 ; “ “ “ “ “ “ “ “ , chb c-wght
143
144 TSB_MAX_POS_A .word 0 ; position of max in TSB to 1/200 of a TSB , cha
145 TSB_MAX_POS_AC .word 0 ; “ “ “ “ “ “ “ “ “ “ , cha c-wght
146 TSB_MAX_POS_B .word 0 ; “ “ “ “ “ “ “ “ “ “ , chb
147 TSB_MAX_POS_BC .word 0 ; “ “ “ “ “ “ “ “ “ “ , chb c-wght
148
149 TSB_NUM_BLR .word 0 ; number of blast recognitions in current TSB
150
151 SQAB_TSB .float 0 ; sum of squares for current tenth sec blk, cha*chb
152 SQABC_TSB .float 0 ; “ “ “ “ “ “ “ “ , cha*chb c-wght
153 TSB_MAX_AB .float 0 ; current max square val for tenth sec blk, cha*chb
154 TSB_MAX_ABC .float 0 ; current max square val for tenth sec blk, cha*chb c-wght
155 TSB_MAX_POS_AB .word 0 ; position of max in TSB to 1/200 of a TSB, cha*chb
156 TSB_MAX_POS_ABC .word 0 ; position of max in TSB to 1/200 of a TSB, cha*chb c-wght
157
158
159 .sect “DP_circ”
160
161 .space 950 ;zero out circular buffer in DPRAM length=3B6h
162
163 .text
164 **
165 * start of program text *
166 **
167 ; Set up interrupt vector table
168 BR START
169 .word 0H ; NMI (Unused interrupts)
170 .word 0H ; TINT0
171 .word 0H ; IIOF0
172 .word ANALOG ; IIOF1 - Amelia interrupt
173 .word 0H ; IIOF2
174 .word 0H ; IIOF3
175
176 .space 6 ; Reserved space
177
178 .word 0h ; Input channel full, port 0
179 .word 0h ; Input channel ready, ICRDY0
180 .word 0h ; Output channel ready
181 .word 0h ; Output channel empty
182 .word 0h ; input channel full, port 0
183 .word 0h ; input channel ready
184 .word 0h ; output channel ready
185 .word 0h ; output channel empty
186
187 .global START ; set up global variables
188 .global WAIT
189 .global LOOPA
190 .global LOOPB
191 .global ANALOG
192 .global ICRDY0
193 .global CHA_INTEGER
194 .global CHB_INTEGER
195 .global SEND_DATA
196 .global DEC_COUNT
197 .global NO_TRNFR
198 .global FILTER
199 .global C_COEFF
200 .global C_DELAYA
201 .global C_DELAYB
202 .global C_C
203 .global C_DA
204 .global C_DB

CERL TR 99/99 143

205 .global GO_ON1
206 .global GO_ON2
207 .global GO_ON3
208 .global GO_ON4
209 .global GO_ON5
210 .global GO_ON6
211 .global GO_ON7
212 .global GO_ON8
213 .global GO_ON9
214 .global GO_ON10
215 .global GO_ON11
216 .global GO_ON12
217 .global GO_ON13
218 .global GO_ON14
219 .global GO_ON15
220 .global GO_ON16
221 .global GO_ON17
222 .global GO_ON18
223 .global GET_BLR
224 .global END_OF_ISR
225 .global END_OF_TSB
226 .global SQA_MICRO_BLK
227 .global SQAC_MICRO_BLK
228 .global SQB_MICRO_BLK
229 .global SQBC_MICRO_BLK
230 .global SQAB_MICRO_BLK
231 .global SQABC_MICRO_BLK
232 .global MICRO_MAX_A
233 .global MICRO_MAX_AC
234 .global MICRO_MAX_B
235 .global MICRO_MAX_BC
236 .global MICRO_MAX_AB
237 .global MICRO_MAX_ABC
238 .global SQA_TSB
239 .global SQAC_TSB
240 .global SQB_TSB
241 .global SQBC_TSB
242 .global SQAB_TSB
243 .global SQABC_TSB
244 .global TSB_MAX_A
245 .global TSB_MAX_AC
246 .global TSB_MAX_B
247 .global TSB_MAX_BC
248 .global TSB_MAX_POS_A
249 .global TSB_MAX_POS_AC
250 .global TSB_MAX_POS_B
251 .global TSB_MAX_POS_BC
252 .global TSB_MAX_POS_AB
253 .global TSB_MAX_POS_ABC
254 .global TSB_NUM_BLR
255 .global SEND_DATA_ADDR
256 .global DPRAM_ADDR
257 .global CURRENT_ADDR
258 .global COMM_PORT0_CTL
259 .global COMM_PORT1_CTL
260 .global COMM_PORT0_INP
261 .global COMM_PORT0_OTP
262 .global COMM_PORT1_OTP
263 .global MICRO_BLK_CNT
264 .global READ
265 .global CONT1
266 .global CONT2
267 .global CONT3
268 .global FIRST_TIME
269 .global BLR_FLAG
270
271
272
273 ; Start of program...
274 START: LDP @DATA_P,DP ; Initialize the stack
275 LDI @STACK,SP
276
277 LDI @IVECTAB,R0 ; Set up the interrupt vector table

144 CERL TR 99/99

278 LDPE R0,IVTP
279
280 ;Write to the registers within AMELIA...
281
282 LDI @UCR,AR0 ; User control register
283 LDI 0a000H,R5 ;
284 STI R5,*AR0 ; ADMCLK1 to be used
285
286 LDI @ACR,AR0 ; Analog control register
287 LDI 0a0H,R5 ;
288 STI R5,*AR0 ; 48 kHz sample rate
289 ; AMELIA into reset
290
291 LDI @ACR,AR0 ; Analog control register
292 LDI 0e0H,R5 ;
293 STI R5,*AR0 ; AMELIA released from reset,
294 ; calibrating
295
296 LDI @CONFIG,AR0 ; Analog configuration register
297 LDI 0b390H,R5 ; loaded with Key value
298 STI R5,*AR0 ;
299
300 LDI @IMR,AR0 ; Analog interrupt mask register
301 LDI 01H,R5 ; Int when RX register full
302 STI R5,*AR0 ;
303
304 LDI @IMR,AR0 ; AR0 = Interrupt mask register
305 LDI @CHANA,AR1 ; AR1 = channel a input
306 LDI @IACKLOC,AR2 ; AR2 = Interrupt acknowledge location
307 LDI @CHANB,AR3 ; AR3 = channel b input
308
309 ; Amelia running and ready. Initialize comm port pointers...
310
311 LDA @COMM_PORT0_OTP, AR4 ; output FIFO addr -channel a
312 LDA @COMM_PORT0_INP, AR5 ; input FIFO addr
313 LDA @COMM_PORT1_OTP, AR6 ; output FIFO addr -channel b
314 LDA @DPRAM_ADDR, AR7 ; dual port ram
315
316 ; zero out the input comm port0 buffer
317
318 PUSH AR4 ; save ar4 on stack
319 LDA @COMM_PORT0_CTL,AR4 ; load address of port0 control reg.
320 LBU1 *AR4,R1 ; load byte 1 of control reg
321 LSH 3,R1 ; shift left by 3 bits
322 LBU0 R1,R1 ; take only byte 0 of R1
323 LSH -4,R1 ; Right shift by 4
324 ; now R1 contains number of words
325 ; in the port0 input buffer
326 POP AR4 ; restore ar4
327 LDI 0,R2
328 CMPI R1,R2 ; compare #words to zero
329 BZ CONT1 ; if no data in register then continue on
330 ADDI -1,R1 ; subtract one from #words
331 LDI R1,RC ; load repeat counter with words-1
332 RPTB READ
333 READ LDI *AR5,R3 ; read in data until its all gone
334
335 ; Enable interrupts...
336
337 CONT1 OR 0B0h, IIF ; IIOF1 interrupt -(A/D board)
338 OR 02000h, ST ; CPU global interrupt
339 IACK *AR2
340
341 WAIT: BR WAIT ; IDLE until interrupted
342
343
344 ***
345 * Interrupt service routine for reading the analog data from the ADC *
346 * and passing to processor B, filtering and monitor calculations. *
347 * Sends data at a rate of 2kHz and only if the output FIFO buffer is empty *
348 ***
349
350 ANALOG:

CERL TR 99/99 145

351 LDI *AR0,R11 ; Read Amelia interrupt to clear
352
353 LDI *AR1,R10 ; Load channel a input -> R10
354 LDI *AR3,R11 ; load channel b input -> R11
355 STI R10,@CHA_INTEGER ; store cha integer sample value
356 STI R11,@CHB_INTEGER ; store chb integer sample value
357 LSH 16,R10 ; left shift by 16 bits
358 LSH 16,R11
359
360 LDI @DEC_COUNT,R8 ; load decimation counter
361 LDI 23,R9 ; we are taking every 24th sample for proc. B
362 CMPI R8,R9 ; compare dec_count to 23
363 BZ SEND_DATA ; goto “send_data” if counter=23
364 ADDI 1,R8 ; increment dec_count by one
365 STI R8,@DEC_COUNT
366 BR FILTER
367
368 SEND_DATA PUSH AR1 ; push address register onto stack
369 PUSH AR3 ; push address register onto stack
370 LDA @COMM_PORT0_CTL,AR1 ; load address of port0 control reg.
371 LDA @COMM_PORT1_CTL,AR3 ; load address of port1 control reg.
372 LBU0 *AR1,R8 ; load byte 0 of comm_port0 control reg.
373 LSH -4,R8 ; right shift by 4 bits
374 ; R8=# of words in output FIFO
375 LDI 0,R9
376 CMPI R8,R9 ; compare # words in FIFO to zero
377 BN NO_TRNFR ; if #words >0 then no transfer of data
378 ; (allow proc. B to get in sync.
379 STI R10,*AR4 ; send cha data to proc. B over comm0
380 STI R11,*AR6 ; send chb data to proc. B over comm1
381 STI R9,@DEC_COUNT ; zero the decimation counter
382 POP AR3 ; restore AR3
383 POP AR1 ; restore AR1
384 BR FILTER
385
386
387 NO_TRNFR STI R9,@DEC_COUNT ; reset the decimation counter to 0
388 POP AR3 ; restore AR3
389 POP AR1 ; restore AR1
390 BR FILTER
391
392
393 FILTER LDI R10,R2 ; copy cha input to R2
394 FLOAT R2,R2 ; convert to floating point
395
396 PUSH AR0 ; save important registers on stack
397 PUSH AR1
398 PUSH BK
399 PUSH IR0
400 PUSH IR1
401 PUSH RC
402

403 **
404 * FILTER CH A with IIR C-filter *
405 * (Basic IIR filter routine from TI TMS320C4x User’s Guide) *
406 **
407
408 LDA @C_COEFF,AR0 ; load address of filter coefficients (a2)
409 LDA @C_DELAYA,AR1 ; load address of filter delay nodes (d(n-2))
410 LDI 3,BK ; initialize Block-size to 3
411 LDI 4,IR0
412 LDI 4,IR1
413 LDI 0,RC
414
415 MPYF3 *AR0,*AR1,R0 ; a2(0)*d(0,n-2) -> R0
416 MPYF3 *AR0++(1),*AR1--(1)%,R1 ; b2(0)*d(0,n-2) -> R1
417
418 RPTBD LOOPA
419
420 MPYF3 *++AR0(1),*AR1,R0 ;a1(0)*d(0,n-1) -> R0
421 || ADDF R0,R2,R2 ;First sum term of d(0,n)
422
423 MPYF3 *++AR0(1),*AR1--(1)%,R0 ;b1(0)*d(0,n-1) -> R0

146 CERL TR 99/99

424 || ADDF3 R0,R2,R2 ;Second sum term of d(0,n)
425 MPYF3 *++AR0(1),R2,R2 ;b0(0)*d(0,n) -> R2
426 || STF R2,*AR1--(1)% ;store d(0,n) point to d(0,n-2)
427
428
429 ; loop starts here
430 MPYF3 *++AR0(1),*++AR1(IR0),R0 ; a2(i)*d(i,n-2) ->R0
431 || ADDF3 R0,R2,R2 ; First sum term of y(i-1,n)
432 ; Pipeline hit on previous
433 ; instruction
434
435 MPYF3 *++AR0(1),*AR1--(1)%,R1 ; b2(i)*D(i,n-2) -> R1
436 || ADDF3 R1,R2,R2 ; Second sum term of y(i-1,n)
437 MPYF3 *++AR0(1),*AR1,R0 ; a1(i)*d(i,n-1) -> R0
438 || ADDF3 R0,R2,R2 ; First sum term of d(i,n)
439
440 MPYF3 *++AR0(1),*AR1--(1)%,R0 ; b1(i)*d(i,n-1) ->R0
441 || ADDF3 R0,R2,R2 ; Second sum term of d(i,n)
442
443 LOOPA MPYF3 *++AR0(1),R2,R2 ; b0(i)*d(i,n) ->R2
444 || STF R2,*AR1--(1)% ; store d(i,n) point to d(i,n-2)
445
446 ; final summation
447
448 ADDF R0,R2 ; first sum term of y(n-1,n)
449 ADDF3 R1,R2,R0 ; second sum term of y(n-1,n)
450 LDI *AR1--(IR1),R1 ; return to first biquad
451 LDI *AR1--(1)%,R2 ; point to d(0,n-1)
452
453
454 STI AR1,@C_DELAYA ; store updated delay pointer
455
456 **
457 * end of filtering for CH A *
458 **
459
460 LDF @GAIN_CON,R2 ; load the filter gain correction const.
461 MPYF R2,R0 ; multiply result by gain const
462 STF R0,@CHA_C ; store current c-filtered ch A sample
463
464 LDI R11,R2 ; copy chb input to R2
465 FLOAT R2,R2 ; convert to floating point
466
467 **
468 * FILTER CH B with IIR C-filter *
469 **
470
471 LDA @C_COEFF,AR0 ; load address of filter coefficients (a2)
472 LDA @C_DELAYB,AR1 ; load address of filter delay nodes (d(n-2))
473 LDI 3,BK ; initialize Block-size to 3
474 LDI 4,IR0
475 LDI 4,IR1
476 LDI 0,RC
477
478 MPYF3 *AR0,*AR1,R0 ; a2(0)*d(0,n-2) -> R0
479 MPYF3 *AR0++(1),*AR1--(1)%,R1 ; b2(0)*d(0,n-2) -> R1
480
481 RPTBD LOOPB
482
483 MPYF3 *++AR0(1),*AR1,R0 ;a1(0)*d(0,n-1) -> R0
484 || ADDF R0,R2,R2 ;First sum term of d(0,n)
485
486 MPYF3 *++AR0(1),*AR1--(1)%,R0 ;b1(0)*d(0,n-1) -> R0
487 || ADDF3 R0,R2,R2 ;Second sum term of d(0,n)
488 MPYF3 *++AR0(1),R2,R2 ;b0(0)*d(0,n) -> R2
489 || STF R2,*AR1--(1)% ;store d(0,n) point to d(0,n-2)
490
491
492 ; loop starts here
493 MPYF3 *++AR0(1),*++AR1(IR0),R0 ; a2(i)*d(i,n-2) ->R0
494 || ADDF3 R0,R2,R2 ; First sum term of y(i-1,n)
495 ; Pipeline hit on previous
496 ; instruction

CERL TR 99/99 147

497
498 MPYF3 *++AR0(1),*AR1--(1)%,R1 ; b2(i)*D(i,n-2) -> R1
499 || ADDF3 R1,R2,R2 ; Second sum term of y(i-1,n)
500 MPYF3 *++AR0(1),*AR1,R0 ; a1(i)*d(i,n-1) -> R0
501 || ADDF3 R0,R2,R2 ; First sum term of d(i,n)
502
503 MPYF3 *++AR0(1),*AR1--(1)%,R0 ; b1(i)*d(i,n-1) ->R0
504 || ADDF3 R0,R2,R2 ; Second sum term of d(i,n)
505
506 LOOPB MPYF3 *++AR0(1),R2,R2 ; b0(i)*d(i,n) ->R2
507 || STF R2,*AR1--(1)% ; store d(i,n) point to d(i,n-2)
508
509 ; final summation
510
511 ADDF R0,R2 ; first sum term of y(n-1,n)
512 ADDF3 R1,R2,R0 ; second sum term of y(n-1,n)
513 LDI *AR1--(IR1),R1 ; return to first biquad
514 LDI *AR1--(1)%,R2 ; point to d(0,n-1)
515
516
517 STI AR1,@C_DELAYB ; store updated delay pointer
518
519
520
521 ***
522 * end of filtering for CH B *
523 ***
524
525 POP RC ; recall important registers that were
526 POP IR1 ; saved before the filtering
527 POP IR0
528 POP BK
529 POP AR1
530 POP AR0
531
532 LDF @GAIN_CON,R2 ; load gain correction constant
533 MPYF R2,R0 ; apply gain correction
534 STF R0,@CHB_C ; store current c-filtered ch B sample
535
536 **
537 * Check to see if we are at the end of a micro blk *
538 **
539
540
541 LDI @DEC_COUNT,R1 ; load decimation counter
542 LDI 0,R2
543 CMPI R1,R2 ; compare dec_count to zero
544 BZ GET_BLR ; if result of compare is zero
545 ; then its time to get the blast
546 ; recogn. result from the comm port
547
548 **
549 * Compute sum of squares, find max level [NOT END OF MICRO_BLOCK] *
550 **
551
552 ; do cha
553 FLOAT R10,R10 ; convert cha data to float pt
554 MPYF3 R10,R10,R3 ; compute square of cha data->R3
555 LDF @CHA_C,R4 ; load c-weighted cha data
556 MPYF R4,R4 ; compute square of c-weighted cha data
557 LDF @SQA_MICRO_BLK,R5 ; load the sum-square value for current
558 ; micro block, cha (24 48kHz samples)
559 LDF @SQAC_MICRO_BLK,R6 ; load sum-square value for micro
560 ; block for cha, c-weighted
561 ADDF R3,R5 ; add in new sumsquare to micro_blk
562 ADDF R4,R6 ; add in new sumsquare to micro_blk
563 STF R5,@SQA_MICRO_BLK ; store new cha micro_blk
564 STF R6,@SQAC_MICRO_BLK ; store new cha c-weight micro_blk
565
566 ; now do chb
567 FLOAT R11,R11 ; convert chb data to float pt
568 MPYF3 R11,R11,R7 ; compute square of chb data->R7
569 LDF @CHB_C,R8 ; load chb c-weighted data

148 CERL TR 99/99

570 MPYF R8,R8 ; square chb c-wght data
571 LDF @SQB_MICRO_BLK,R5 ; load sum-square for chb micro_blk
572 LDF @SQBC_MICRO_BLK,R6 ; load sum-square for chb c-wght m_blk
573 ADDF R7,R5 ; add in new sumsquare to micro_blk
574 ADDF R8,R6 ; add in new sumsquare to micro_blk
575 STF R5,@SQB_MICRO_BLK ; store new chb micro_blk
576 STF R6,@SQBC_MICRO_BLK ; store new chb c-wght micro_blk
577
578 ; now do for cross mult of channels
579 MPYF3 R10,R11,R7 ; cha*chb->R7
580 LDF @SQAB_MICRO_BLK,R5 ; load sum-square for crossmult m_blk
581 ADDF R7,R5 ; add in new sumsquare to micro_blk
582 STF R5,@SQAB_MICRO_BLK ; store updated sumsquare
583 LDF @CHA_C,R8 ; load cha c-weighted data
584 LDF @CHB_C,R6 ; load chb c-weighted data
585 MPYF R8,R6 ; R6=cha_c*chb_c
586 LDF @SQABC_MICRO_BLK,R8 ; load sum-square for crossmult c-weigt
587 ADDF R6,R8 ; add in new sumsquare to micro_blk
588 STF R8,@SQABC_MICRO_BLK ; store new crossmult c-wght micro_blk
589
590 ; check for new max
591
592 ABSF R10,R3 ; abs val of cha data
593 LDF @MICRO_MAX_A,R1 ; load max in this micro_blk for cha
594 LDF @MICRO_MAX_AC,R2 ; load max in this micro_blk cha c-wght
595 CMPF R1,R3 ; compare cha to max cha in micro blk
596 BN GO_ON1 ; if max in micro is bigger than cha then go on
597 STF R3,@MICRO_MAX_A ; store new found micro max cha
598 GO_ON1 LDF @CHA_C,R1 ; load cha c-wght
599 ABSF R1,R1 ; absolute val
600 CMPF R2,R1 ; compare cha© to max cha © in micro so far
601 BN GO_ON2 ; if max a© in micro is bigger then go on
602 STF R1,@MICRO_MAX_AC ; store new found micro max cha ©
603 GO_ON2 ABSF R11,R2 ; abs val of chb data
604 LDF @MICRO_MAX_B,R3 ; load max in this micro_blk for chb
605 LDF @MICRO_MAX_BC,R4 ; load max in this micro_blk for chb c-wght
606 CMPF R3,R2 ; compare cha to max thus far
607 BN GO_ON3 ; if max b is bigger then go on
608 STF R2,@MICRO_MAX_B ; store new found max chb
609 GO_ON3 LDF @CHB_C,R3 ; load chb c-wght
610 ABSF R3,R3 ; abs val chb c-wght
611 CMPF R4,R3 ; compare chb c-wght to max thus far
612 BN GO_ON4 ; if max b © is bigger then go on
613 STF R3,@MICRO_MAX_BC ; store new found max chb c-wght
614 GO_ON4 LDF @MICRO_MAX_AB,R3 ; load cha*chb max so far in this m_blk
615 ABSF R7,R7 ; take abs val of current cha*chb
616 CMPF R3,R7 ; compare cha*chb to max thus far
617 BN GO_ON13 ; if max old cha*chb is bigger then go on
618 STF R7,@MICRO_MAX_AB ; store new found max cha*chb
619 GO_ON13 LDF @MICRO_MAX_ABC,R3 ; load cha*chb max so far, c-wght
620 ABSF R6,R6 ; take abs val of current cha*chb c-wght
621 CMPF R3,R6 ; compare cha*chb to max thus far
622 BN GO_ON14 ; if old max cha*chb c-wght is bigger then go on
623 STF R6,@MICRO_MAX_ABC ; store new found max cha*chb c-wght
624 GO_ON14 BR END_OF_ISR ; jump down to end of service routine
625
626 ***
627 * done sumsq computations for [NOT END OF MICRO_BLOCK] *
628 ***
629
630 ***
631 * start sum of squares, max and blast/ no blast for [END OF MICRO_BLOCK] *
632 ***
633
634 **************************************
635 * get Blast recogn info *
636 **************************************
637
638 GET_BLR LDI @FIRST_TIME,R8 ; load first time flag. If=1 then its the first
time
639 ; reading from the comm port and there won’t be
640 ; anything to read

CERL TR 99/99 149

641 CMPI 0,R8
642 BZ CONT2 ; if not first time go on and read from port
643 STI 0,@FIRST_TIME ; set flag to NOT first time
644 LDI 0,R9 ; load a zero into BLR flag
645 BR CONT3
646 CONT2 LDI *AR5,R9 ; load blast recogn. flag from CPU_B
647 ; flag=1 ->blast
648 ; flag=0 ->no blast
649 CONT3 STI R9,@BLR_FLAG ; save current blr flag
650 LDI @TSB_NUM_BLR,R8 ; load number of blr’s in tenth sec blk
651 ADDI R9,R8 ; add current flag to total
652 STI R8,@TSB_NUM_BLR ; store updated total
653
654 **
655 * finish off sum of squares for this micro_block *
656 **
657
658 MPYF3 R10,R10,R3 ; compute square of cha data->R3
659 LDF @CHA_C,R4 ; load c-weighted cha data
660 MPYF R4,R4 ; compute square of c-weighted cha data
661 LDF @SQA_MICRO_BLK,R5 ; load the sum-square value for current
662 ; micro block, cha (24 48kHz samples)
663 LDF @SQAC_MICRO_BLK,R6 ; load sum-square value for micro
664 ; block for cha, c-weighted
665 ADDF R3,R5 ; add in new sumsquare to micro_blk
666 ADDF R4,R6 ; add in new sumsquare to micro_blk
667 STF R5,@SQA_MICRO_BLK ; store new cha micro_blk
668 STF R6,@SQAC_MICRO_BLK ; store new cha c-weight micro_blk
669
670 ; now do ch b
671 MPYF3 R11,R11,R7 ; compute square of chb data->R7
672 LDF @CHB_C,R8 ; load chb c-weighted data
673 MPYF R8,R8 ; square chb c-wght data
674 LDF @SQB_MICRO_BLK,R5 ; load sum-square for chb micro_blk
675 LDF @SQBC_MICRO_BLK,R6 ; load sum-square for chb c-wght m_blk
676 ADDF R7,R5 ; add in new sumsquare to micro_blk
677 ADDF R8,R6 ; add in new sumsquare to micro_blk
678 STF R5,@SQB_MICRO_BLK ; store new chb micro_blk
679 STF R6,@SQBC_MICRO_BLK ; store new chb c-wght micro_blk
680
681 ; now do crossmult
682 LDF @CHA_C,R3 ; load cha c-wght
683 LDF @CHB_C,R4 ; load chb c-wght
684 MPYF3 R10,R11,R7 ; R7=cha*chb
685 MPYF3 R3,R4,R8 ; R8=cha_c*chb_c
686 LDF @SQAB_MICRO_BLK,R5 ; load sumsquare for cha*chb m_blk
687 LDF @SQABC_MICRO_BLK,R6 ; load sumsquare for cha*chb c-wght m_blk
688 ADDF R7,R5 ; add in new sumsquare
689 ADDF R8,R6 ; add in new sumsquare c-wght
690 STF R5,@SQAB_MICRO_BLK ; store new cha*chb sumsq
691 STF R6,@SQABC_MICRO_BLK ; store new cha_c*chb_c sumsq
692
693
694 **
695 * find final max vals for micro block *
696 **
697
698 ABSF R10,R3 ; abs val of cha data
699 LDF @MICRO_MAX_A,R1 ; load max in this micro_blk for cha
700 LDF @MICRO_MAX_AC,R2 ; load max in this micro_blk cha c-wght
701 CMPF R1,R3 ; compare cha to max cha in micro
702 BN GO_ON5 ; if max in micro is bigger than cha then go on
703 STF R3,@MICRO_MAX_A ; store new found micro max cha
704 GO_ON5 LDF @CHA_C,R1 ; load cha c-wght
705 ABSF R1,R1 ; absolute val
706 CMPF R2,R1 ; compare cha© to max cha © in micro so far
707 BN GO_ON6 ; if max a© in micro is bigger then go on
708 STF R1,@MICRO_MAX_AC ; store new found micro max cha ©
709 GO_ON6 ABSF R11,R2 ; abs val of chb data
710 LDF @MICRO_MAX_B,R3 ; load max in this micro_blk for chb
711 LDF @MICRO_MAX_BC,R4 ; load max in this micro_blk for chb c-wght
712 CMPF R3,R2 ; compare cha to max thus far
713 BN GO_ON7 ; if max b is bigger then go on

150 CERL TR 99/99

714 STF R2,@MICRO_MAX_B ; store new found max chb
715 GO_ON7 LDF @CHB_C,R3 ; load chb c-wght
716 ABSF R3,R3 ; abs val chb c-wght
717 CMPF R4,R3 ; compare chb c-wght to max thus far
718 BN GO_ON8 ; if max b © is bigger then go on
719 STF R3,@MICRO_MAX_BC ; store new found max chb c-wght
720 GO_ON8 LDF @MICRO_MAX_AB,R3 ; load old max for cha*chb
721 ABSF R7,R7 ; take abs of current cha*chb
722 CMPF R3,R7 ; compare cha*chb to max thus far
723 BN GO_ON15 ; if old max cha*chb is bigger then go on
724 STF R7,@MICRO_MAX_AB ; store new found max cha*chb
725 GO_ON15 LDF @MICRO_MAX_ABC,R3 ; load old max for cha_c*chb_c
726 ABSF R8,R8 ; take abs val of current cha_c*chb_c
727 CMPF R3,R8 ; compare cha_c*chb_c to max thus far
728 BN GO_ON16 ; if old max cha_c*chb_c is bigger then go on
729 STF R8,@MICRO_MAX_ABC ; store new found max cha_c*chb_c
730 GO_ON16 LDI @MICRO_BLK_CNT,R1 ; load micro block counter
731
732
733
734 ***
735 * add micro sum of squares info to TSB info *
736 ***
737
738 LDF @SQA_MICRO_BLK,R2 ; load micro sum of squares for cha
739 LDF @SQA_TSB,R3 ; load TSB sum of squares for cha
740 ADDF R2,R3 ; add in micro sumsq to TSB sumsq cha
741 LDF @SQAC_MICRO_BLK,R4 ; load micro sumsq for cha c-wght
742 LDF @SQAC_TSB,R5 ; load TSB sumsq for cha c-wght
743 ADDF R4,R5 ; add in micro sumsq to TSB sumsq cha©
744 STF R3,@SQA_TSB ; store TSB sumsq for cha
745 LDF @SQB_MICRO_BLK,R2 ; load micro sumsq for chb
746 LDF @SQB_TSB,R3 ; load TSB sumsq for chb
747 ADDF R2,R3 ; add in micro sumsq to TSB sumsq chb
748 STF R5,@SQAC_TSB ; store TSB sumsq for cha c-wght
749 LDF @SQBC_MICRO_BLK,R4 ; load micro sumsq for chb c-wght
750 LDF @SQBC_TSB,R5 ; load TSB sumsq for chb c-wght
751 ADDF R4,R5 ; add in micro sumsq to TSB sumsq chb©
752 STF R3,@SQB_TSB ; store TSB sumsq for chb
753 STF R5,@SQBC_TSB ; store TSB sumsq for chb©
754 LDF @SQAB_MICRO_BLK,R2 ; load micro blk sum for cha*chb
755 LDF @SQAB_TSB,R3 ; load tsb sum of squares for cha*chb
756 ADDF R2,R3 ; add in micro sumsq for cha*chb
757 STF R3,@SQAB_TSB ; store updated tsb sumsq
758 LDF @SQABC_MICRO_BLK,R4 ; load micro blk sum for cha*chb c-wght
759 LDF @SQABC_TSB,R5 ; load tsb sum for cha*chb c-wght
760 ADDF R4,R5 ; add in micro sumsq for cha*chb c-wght
761 STF R5,@SQABC_TSB ; store updated tsb sumsq
762
763
764
765 ***
766 * check to see if current micro blk contains *
767 * the max value in TSB thus far *
768 ***
769 LDI @MICRO_BLK_CNT,R8 ; load micro_blk counter into R8
770 LDF @TSB_MAX_A,R1 ; load TSB max for cha
771 LDF @MICRO_MAX_A,R2 ; load micro max for cha
772 CMPF R1,R2 ; compare the two max vals
773 BN GO_ON9 ; if TSB max is greater then go on
774 STF R2,@TSB_MAX_A ; store new found max
775 STI R8,@TSB_MAX_POS_A ; save max position=micro block counter
776 GO_ON9 LDF @TSB_MAX_AC,R2 ; load TSB max for cha ©
777 LDF @MICRO_MAX_AC,R3 ; load micro max for cha ©
778 CMPF R2,R3 ; compare the two max vals
779 BN GO_ON10 ; if TSB max is greater then go on
780 STF R3,@TSB_MAX_AC ; store new found max
781 STI R8,@TSB_MAX_POS_AC ; store max position
782 GO_ON10 LDF @TSB_MAX_B,R2 ; load TSB max for chb
783 LDF @MICRO_MAX_B,R3 ; load micro max for chb
784 CMPF R2,R3 ; compare the two max vals
785 BN GO_ON11 ; if TSB max is greater then go on
786 STF R3,@TSB_MAX_B ; store new found max

CERL TR 99/99 151

787 STI R8,@TSB_MAX_POS_B ; store max position
788 GO_ON11 LDF @TSB_MAX_BC,R2 ; load TSB max for chb©
789 LDF @MICRO_MAX_BC,R3 ; load micro max for chb©
790 CMPF R2,R3 ; compare the two max vals
791 BN GO_ON12 ; if TSB max is greater then go on
792 STF R3,@TSB_MAX_BC ; store new found max
793 STI R8,@TSB_MAX_POS_BC ; store max position
794 GO_ON12 LDF @TSB_MAX_AB,R2 ; load tsb max for cha*chb
795 LDF @MICRO_MAX_AB,R3 ; load micro max for cha*chb
796 CMPF R2,R3 ; compare the two max vals
797 BN GO_ON17 ; if tsb max is greater then go on
798 STF R3,@TSB_MAX_AB ; store new found tsb max
799 STI R8,@TSB_MAX_POS_AB ; store max position
800 GO_ON17 LDF @TSB_MAX_ABC,R2 ; load tsb max for cha_c*chb_c
801 LDF @MICRO_MAX_ABC,R3 ; load micro max for “
802 CMPF R2,R3 ; compare the two max vals
803 BN GO_ON18 ; if tsb max is bigger then go on
804 STF R3,@TSB_MAX_ABC ; store new found max
805 STI R8,@TSB_MAX_POS_ABC ; store max position
806 GO_ON18 LDI 199,R2 ; load max for micro counter
807
808
809 **
810 * clear micro blk variables *
811 **
812
813 LDF 0,R3 ; load floating pt zero into all micro vars
814 STF R3,@SQA_MICRO_BLK
815 STF R3,@SQAC_MICRO_BLK
816 STF R3,@SQB_MICRO_BLK
817 STF R3,@SQBC_MICRO_BLK
818 STF R3,@MICRO_MAX_A
819 STF R3,@MICRO_MAX_AC
820 STF R3,@MICRO_MAX_B
821 STF R3,@MICRO_MAX_BC
822 STF R3,@SQAB_MICRO_BLK
823 STF R3,@SQABC_MICRO_BLK
824 STF R3,@MICRO_MAX_AB
825 STF R3,@MICRO_MAX_ABC
826
827

828 ***
829 * check to see if current micro block ends *
830 * a tenth second block (MICRO_BLK_CNT=199) *
831 ***
832
833 LDI @MICRO_BLK_CNT,R1 ; load micro_blk counter
834 CMPI R1,R2 ; compare micro block counter to 199
835 BZ END_OF_TSB ; if counter=199 then goto end TSB calcs
836 ADDI 1,R1 ; increment micro counter
837 STI R1,@MICRO_BLK_CNT ; store updated counter
838 BR END_OF_ISR ; else goto end of service routine
839
840 **
841 * Close out a Tenth Second Block (TSB): *
842 * All data in tsb_etc locations should be correct. Now write it out to *
843 * the DPRAM circular buffer(length 950 (50blks*19words)) *
844 * Current starting address of data in stored in a0000400h in DPRAM. *
845 **
846
847 END_OF_TSB LDI 950,BK ; load size of DPRAM circ. buff. (5secs*19words)
848 PUSH AR5 ; save contents of AR5 on stack
849 PUSH AR6 ; save contents of AR6 on stack
850 LDA @CURRENT_ADDR,AR6 ; load addr of spot in DPRAM where current AR7
851 ; is stored so PC knows where most current data
852 ; lies
853 STI AR7,*AR6 ; store contents of AR7 to current addr
854
855 LDA @SEND_DATA_ADDR,AR5 ; load first address of data to send to DPRAM
856 LDF *AR5++,R1 ; load SQA_TSB
857 TOIEEE R1,R1 ; convert SQA_TSB to IEEE float

152 CERL TR 99/99

858 LDF *AR5++,R2 ; load SQAC_TSB
859 || STF R1,*AR7++% ; store SQA_TSB in circ buff
860 TOIEEE R2,R2 ; convert SQAC_TSB to IEEE float
861 LDF *AR5++,R3 ; load SQB_TSB
862 || STF R2,*AR7++% ; store SQAC_TSB
863 TOIEEE R3,R3 ; convert SQB_TSB to IEEE float
864 LDF *AR5++,R4 ; load SQBC_TSB
865 || STF R3,*AR7++% ; store SQB_TSB
866 TOIEEE R4,R4 ; convert SQBC_TSB to IEEE float
867 LDF *AR5++,R5 ; load TSB_MAX_A
868 || STF R4,*AR7++% ; store SQBC_TSB
869 TOIEEE R5,R5 ; convert TSB_MAX_A to IEEE float
870 LDF *AR5++,R6 ; load TSB_MAX_AC
871 || STF R5,*AR7++% ; store TSB_MAX_A
872 TOIEEE R6,R6 ; convert TSB_MAX_AC to IEEE float
873 LDF *AR5++,R7 ; load TSB_MAX_B
874 || STF R6,*AR7++% ; store TSB_MAX_AC
875 TOIEEE R7,R7 ; convert TSB_MAX_B to IEEE float
876 LDF *AR5++,R1 ; load TSB_MAX_BC
877 || STF R7,*AR7++% ; store TSB_MAX_B
878 TOIEEE R1,R1 ; convert TSB_MAX_BC to IEEE float
879 LDI *AR5++,R2 ; load TSB_MAX_POS_A
880 STF R1,*AR7++% ; store TSB_MAX_BC
881 LDI *AR5++,R3 ; load TSB_MAX_POS_AC
882 || STI R2,*AR7++% ; store TSB_MAX_POS_A
883 LDI *AR5++,R4 ; load TSB_MAX_POS_B
884 || STI R3,*AR7++% ; store TSB_MAX_POS_AC
885 LDI *AR5++,R5 ; load TSB_MAX_POS_BC
886 || STI R4,*AR7++% ; store TSB_MAX_POS_B
887 LDI *AR5++,R6 ; load TSB_NUM_BLR
888 || STI R5,*AR7++% ; store TSB_MAX_POS_BC
889 STI R6,*AR7++% ; store TSB_NUM_BLR
890 LDF *AR5++,R2 ; load SQAB_TSB
891 TOIEEE R2,R2 ; convert to IEEE float
892 LDF *AR5++,R3 ; load SQABC_TSB
893 || STF R2,*AR7++% ; store SQAB_TSB
894 TOIEEE R3,R3 ; convert to IEEE float
895 LDF *AR5++,R4 ; load TSB_MAX_AB
896 || STF R3,*AR7++% ; store SQABC_TSB
897 TOIEEE R4,R4 ; convert to IEEE float
898 LDF *AR5++,R5 ; load TSB_MAX_ABC
899 || STF R4,*AR7++% ; store TSB_MAX_AB
900 TOIEEE R5,R5 ; convert to IEEE float
901 LDI *AR5++,R6 ; load TSB_MAX_POS_AB
902 STF R5,*AR7++% ; store TSB_MAX_ABC
903 LDI *AR5,R2 ; load TSB_MAX_POS_ABC
904 || STI R6,*AR7++% ; store TSB_MAX_POS_AB
905 STI R2,*AR7++% ; store TSB_MAX_POS_ABC
906 POP AR6 ; restore AR6
907 POP AR5 ; restore AR5
908 LDI 0,R6
909 STI R6,@MICRO_BLK_CNT ; zero the micro blk counter
910
911 ***
912 * clear all the TSB variables *
913 ***
914
915 LDF 0,R1
916 STF R1,@SQA_TSB
917 STF R1,@SQAC_TSB
918 STF R1,@SQB_TSB
919 STF R1,@SQBC_TSB
920 STF R1,@SQAB_TSB
921 STF R1,@SQABC_TSB
922 STF R1,@TSB_MAX_A
923 STF R1,@TSB_MAX_AC
924 STF R1,@TSB_MAX_B
925 STF R1,@TSB_MAX_BC
926 STF R1,@TSB_MAX_AB
927 STF R1,@TSB_MAX_ABC
928 LDI 0,R1
929 STI R1,@TSB_MAX_POS_A
930 STI R1,@TSB_MAX_POS_AC

CERL TR 99/99 153

931 STI R1,@TSB_MAX_POS_B
932 STI R1,@TSB_MAX_POS_BC
933 STI R1,@TSB_MAX_POS_AB
934 STI R1,@TSB_MAX_POS_ABC
935 STI R1,@TSB_NUM_BLR
936
937 ***
938 * end of the service routine proper *
939 ***
940
941
942 END_OF_ISR LDI @CHA_INTEGER,R1 ; load cha data
943 STI R1,*AR1 ; output cha data to cha output
944 ; on D/A converter
945
946 LDI @BLR_FLAG,R9
947 LSH 14,R9 ; shift R9=blr flag
948 STI R9,*AR3 ; output blr flag to chb output
949 ; on D/A converter
950
951
952 RETI
953
954
955 ***
956 * END OF PROGRAM *
957 ***
958
959 .end

154 CERL TR 99/99

Appendix D3: C-Weighting Filter

The ideal analog C-weighting has the frequency response given by the transfer
function

H s
K s

s s
()

() ()
=

+ +
1

2

1
2

2
2ω ω

where q1=2_ 20.598997, q2=2_12194.22, and K1 is a constant (as per ANSI S1.4).
MATLAB (The Mathworks, Inc., Natick, MA) was used to compute the frequency
response of this filter. The constant, K1, was found to be 5.912387x109 by re-
quiring that the response have unity magnitude at 1 kHz. This transfer function
was then transformed to the digital domain via the bilinear transform. The
nonlinear mapping meant that the high frequency response of the resulting digi-
tal transfer function did not match well with the desired response. To correct for
this high frequency, poles were altered in an ad hoc fashion until the desired re-
sponse was achieved.

To implement this IIR digital filter using the TI TMS320C40 DSP processor, the
transfer function had to be broken down into 2-second order biquad sections of
the form

H z
b b z b z

a z a z1
0 1

1
2

2

1
1

2
21

() =
+ +

− −

− −

− −

This was done by finding the roots of the transfer function and grouping them in
second-order sections. Note that the pairing of poles and zeros in this case was
crucial to the stability of the filter. There are two poles at z=1 and two zeros at
z=0.997. Because (1) IIR filters are inherently more sensitive to numerical
problems and (2) these poles and zeros nearly cancel each other out, these pairs
were placed in different biquad sections. If they were placed in the same biquad,
the filter became unstable. The final transfer functions for the two biquad sec-
tions were:

H z
z z

z z0

1 2

1 2

0 44519794 089039588 0 44519794
1 0 2231468 0 000122448623

()
. . .

. .
=

+ +
− +

− −

− −

CERL TR 99/99 155

H z
z z

z z1

1 2

1 2

0 44519794 0 89039588 0 44519794
1 19946068 0 99461403

()
. . .

. .
=

− +
− +

− −

− −

A gain correction factor is post multiplied to the filtered data to make sure that
the response is unity at 1 kHz as measured from the actual system. This factor
was measured to be 1.3101327. The measured response of the digital filter is
plotted in Figure D1 with the ideal analog response. The two responses are very
close, only differing at the extreme high and low frequencies. The resulting re-
sponse is well within the tolerances for a Type 0 sound level meter as described
in ANSI S1.4-1983.

Figure D1. Frequency response of C-filter ideal analog and measured digital response.

It should be noted that the type of digital filter used here (IIR) was chosen be-
cause a finite impulse response (FIR) filter could not be designed that could be
implemented in real time. It could not be designed because of the high number
of coefficients required to match the response of the ideal filter.

156 CERL TR 99/99

Appendix E: Field Unit Schematics

Table E1. Connector pin assignments.

Pin Number Function

1 Common. Relay Pole 1

2 Normally Closed Contact, Pole 1

3 Normally Open Contact, Pole 1

4 Opto-Isolated Reset Out]

5 Opto-Isolated Reset Source

6 Opto-Isolated NOT Reset Out

7 Opto-Isolated NOT Reset Source

8 Buffered Reset Out

9 +5 VDC Unfused, 1 A max

10 +5 VDC Unfused, 1 A max

11 +5 VDC Unfused, 1 A max

12 +5 VDC Unfused, 1 A max

13 56 kHz square wave while WDOG enabled

14 Common. Relay Pole 2

15 Normally Closed Contact, Pole 2

16 Normally Open Contact, Pole 2

17 Source Opto-Isolated Input #0

18 Return Opto-Isolated Input #0

19 Return Opto-Isolated Input #1

20 Source Opto-Isolated Input #1

21 Tachometer Input from Fan

22 Ground

23 Ground

24 Ground

25 Ground

CERL TR 99/99 157

Figure E1. The analog input connector on the DPC-C40 DSP motherboard.

158 CERL TR 99/99

Figure E2. Interconnections between audio input boards, 24-V board, ISA card cage, and
microphone power supply/preamp.

CERL TR 99/99 159

Figure E3. Audio input PCB schematic and connector pinout.

160 CERL TR 99/99

Figure E4. Schematic of 24-V board.

CERL TR 99/99 161

Figure E5. Wiring harness connecting the ISA card cage, the 12-V board, and the audio input
boards.

Figure E6. Wind meter debounce circuit schematic, which is inserted between the WDT-501P
watchdog card and the wiring harness.

162 CERL TR 99/99

Figure E7. Connections between field unit, microphones, and wind meter.
Channel 1 (top) includes the wind meter block; channel 2 (bottom) does not.

CERL TR 99/99 163

Appendix F: Field Unit Communications
Protocol Specification

The specification (“Communication Protocol for the CERL Noise Monitor-
ing/Warning System”) on the following pages is the protocol for the original
CERL field unit. This prototype field unit adheres to this specification, with the
following exceptions:

• Support for bit rates greater than 300 bps.
• Flow control is sometimes inexact due to limitations imposed by the 28.8

kbps internal modem’s buffering. An incoming ACK or NAK may not imme-
diately terminate an outgoing packet.

• Timings are somewhat inexact.
• An alternate mechanism is provided for deleting all blocks — an attempt to

set an autocalibration interval of greater than 10 hours via the mode set
command will wipe out all data stored in the monitor (i.e., by sending 0x2B
as the autocal interval = 11 hours). This is because, for some reason, the base
station code sends this sequence instead of the documented sequence.

• Listen mode is not implemented.
• The meaning of the wind flag has changed.

The wind flag returned as part of Packet Type A and H is the sum of the follow-
ing:

0x01 Windy block (wind speed exceeded threshold)
0x10 No blast detection
0x20 Did not exceed filter requirements

with 0x20 added onto the result to ensure that the result is a printable ASCII
character.

164 CERL TR 99/99

CERL TR 99/99 165

166 CERL TR 99/99

CERL TR 99/99 167

168 CERL TR 99/99

CERL TR 99/99 169

170 CERL TR 99/99

CERL TR 99/99 171

172 CERL TR 99/99

CERL TR 99/99 173

174 CERL TR 99/99

CERL TR 99/99 175

176 CERL TR 99/99

CERL TR 99/99 177

178 CERL TR 99/99

CERL TR 99/99 179

180 CERL TR 99/99

CERL TR 99/99 181

182 CERL TR 99/99

CERL TR 99/99 183

Distribution

Chief of Engineers
ATTN: CEHEC-IM-LH (2)
ATTN: HECSA Mailroom (2)
ATTN: CECC-R
ATTN: CERD-L
ATTN: CERD-M

Fort Drum 13602-5097
ATTN: ATZS-PW-E (10)

Defense Tech Info Center 22304
ATTN: DTIC-O (2)

19
12/99

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
December 1999

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE

CERL Noise Monitoring and Warning System 98

6. AUTHOR(S)
Daniel Sachs, Jonathan W. Benson, and Paul D. Schomer

5. FUNDING NUMBERS

MIPR
6MCER50063 H16

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Construction Engineering Research Laboratory (CERL)
P.O. Box 9005
Champaign, IL 61826-9005

8. PEFORMING ORGANIZATION
REPORT NUMBER

TR 99/99

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Commander, Fort Drum
ATTN: ATZS-PW-E
Bldg. 4838
Fort Drum, NY 13602-5097

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

9. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5385 Port Royal Road, Springfield, VA 22161

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b.DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The present CERL Noise Monitoring and Warning System, designed in the mid-1980s, has difficulty separating blast noise
sounds from wind-induced pseudo-noise. A new noise monitor was designed that would be more wind noise resistant and
would use more modern electronics and methods than those available in 1985. This report documents the design and
construction of this new noise monitor.

The heart of wind-noise resistance is a two-microphone array and special signal processing to identify and separate blast
sounds from pseudo-wind noise. The results are quite encouraging. It appears that the new monitor improves the signal-to-
noise ratio by about 10 dB. It is recommended that this monitor be transferred to the field by a demonstration validation
program such as the Environmental Security Technology Certification Program (ESTCP).

15. NUMBER OF PAGES
184

14. SUBJECT TERMS

noise noise measurement
warning system blast noise
ESTCP

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ASTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

	Foreword
	List of Figures and Tables
	Introduction
	Background
	Objective
	Approach
	Major Improvements
	Major System Changes From Original Implementation

	Mode of Technology Transfer

	Design Overview
	Hardware
	Field Unit Controller Software
	Field Unit DSP Software
	Base Station Software

	Noise Monitor Operation Manual
	Base Station Configuration and Operation
	Base Station Hardware
	Base Station Software
	Base Station Operation

	Field Unit Hardware Installation
	Field Unit Configuration
	Field Unit Console Mode
	Field Unit Configuration
	Data Collection and the Blast Detection Algorithm
	Thresholds, Filters, and Data Collection
	Field Unit Maintenance

	Preventative Maintenance
	Field Unit Service Mode
	Field Unit FLASH Update Procedure

	Noise Monitor Testing Results
	Laboratory Test Results for the Blast Recognition System
	Results of Blast Noise Detection / Wind Noise Rejection Tests
	Results of Cross-Multiplication in Blast Noise Measurement Simulations

	Implementation Details
	Controller Software Details
	Controller Software Run-time Files
	Controller Software Boot Process and Field Service Mode
	Source Code Overview
	Data Queue File Format
	Configuration Notes

	Hardware Details
	Configuring ISA Cards
	Assembling the ISA Card Cage
	Assembling Custom Components
	Field Unit Assembly

	Conclusions and Recommendation
	References
	Appendix A:	Console Commands
	Appendix B:	Monitor Options
	Appendix C:	Field Unit Software Source Code
	Appendix D1:	MON7_2 code (CPU_B) Blast Detection Algorithm
	Appendix D2:	MON7_1 code (CPU_A) Noise Monitor Computations
	Appendix D3:	C-Weighting Filter
	Appendix E:	Field Unit Schematics
	Appendix F:	Field Unit Communications Protocol Specification

